Suppr超能文献

通过多图谱标签融合实现自动群体HARDI白质纤维束聚类

Automatic Population HARDI White Matter Tract Clustering by Label Fusion of Multiple Tract Atlases.

作者信息

Jin Yan, Shi Yonggang, Zhan Liang, Li Junning, de Zubicaray Greig I, McMahon Katie L, Martin Nicholas G, Wright Margaret J, Thompson Paul M

机构信息

Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.

University of Queensland, Brisbane St. Lucia, QLD 4072, Australia.

出版信息

Multimodal Brain Image Anal (2012). 2012 Jan 1;7509:147-156. doi: 10.1007/978-3-642-33530-3_12.

Abstract

Automatic labeling of white matter fibres in diffusion-weighted brain MRI is vital for comparing brain integrity and connectivity across populations, but is challenging. Whole brain tractography generates a vast set of fibres throughout the brain, but it is hard to cluster them into anatomically meaningful tracts, due to wide individual variations in the trajectory and shape of white matter pathways. We propose a novel automatic tract labeling algorithm that fuses information from tractography and multiple hand-labeled fibre tract atlases. As streamline tractography can generate a large number of false positive fibres, we developed a top-down approach to extract tracts consistent with known anatomy, based on a distance metric to multiple hand-labeled atlases. Clustering results from different atlases were fused, using a multi-stage fusion scheme. Our "label fusion" method reliably extracted the major tracts from 105-gradient HARDI scans of 100 young normal adults.

摘要

在扩散加权脑磁共振成像中对白质纤维进行自动标记对于比较不同人群的脑完整性和连通性至关重要,但具有挑战性。全脑纤维束成像在整个大脑中生成大量纤维,但由于白质通路的轨迹和形状存在广泛的个体差异,很难将它们聚类成具有解剖学意义的纤维束。我们提出了一种新颖的自动纤维束标记算法,该算法融合了纤维束成像和多个手工标记的纤维束图谱的信息。由于流线型纤维束成像会产生大量假阳性纤维,我们基于与多个手工标记图谱的距离度量,开发了一种自上而下的方法来提取与已知解剖结构一致的纤维束。使用多阶段融合方案融合来自不同图谱的聚类结果。我们的“标签融合”方法从100名年轻正常成年人的105梯度高分辨率扩散成像(HARDI)扫描中可靠地提取了主要纤维束。

相似文献

7
Tractography in the presence of multiple sclerosis lesions.多发性硬化病变存在情况下的轨迹描绘。
Neuroimage. 2020 Apr 1;209:116471. doi: 10.1016/j.neuroimage.2019.116471. Epub 2019 Dec 24.
10
Automated tract extraction via atlas based Adaptive Clustering.通过基于图谱的自适应聚类进行自动纤维束提取。
Neuroimage. 2014 Nov 15;102 Pt 2(0 2):596-607. doi: 10.1016/j.neuroimage.2014.08.021. Epub 2014 Aug 15.

引用本文的文献

1
White Matter Tract Segmentation as Multiple Linear Assignment Problems.白质纤维束分割作为多个线性分配问题
Front Neurosci. 2018 Feb 6;11:754. doi: 10.3389/fnins.2017.00754. eCollection 2017.
2
MAPPING AGE EFFECTS ALONG FIBER TRACTS IN YOUNG ADULTS.绘制年轻成年人纤维束上的年龄效应图谱。
Proc IEEE Int Symp Biomed Imaging. 2017;2017:101-104. doi: 10.1109/ISBI.2017.7950478. Epub 2017 Jun 19.
9
Multi-atlas segmentation of biomedical images: A survey.生物医学图像的多图谱分割:一项综述。
Med Image Anal. 2015 Aug;24(1):205-219. doi: 10.1016/j.media.2015.06.012. Epub 2015 Jul 6.

本文引用的文献

4
A generative model for image segmentation based on label fusion.基于标签融合的图像分割生成模型。
IEEE Trans Med Imaging. 2010 Oct;29(10):1714-29. doi: 10.1109/TMI.2010.2050897. Epub 2010 Jun 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验