IEEE J Biomed Health Inform. 2015 Nov;19(6):1777-93. doi: 10.1109/JBHI.2015.2472640. Epub 2015 Aug 25.
Recently, we have proposed a body-sensor-network-based approach, composed of a few body-worn wireless inertial nodes, for automatic assignment of Unified Parkinson's Disease Rating Scale (UPDRS) scores in the following tasks: Leg agility (LA), Sit-to-Stand (S2S), and Gait (G). Unlike our previous works and the majority of the published studies, where UPDRS tasks were the sole focus, in this paper, we carry out a comparative investigation of the LA, S2S, and G tasks. In particular, after providing an accurate description of the features identified for the kinematic characterization of the three tasks, we comment on the correlation between the most relevant kinematic parameters and the UPDRS scoring. We analyzed the performance achieved by the automatic UPDRS scoring system and compared the estimated UPDRS evaluation with the one performed by neurologists, showing that the proposed system compares favorably with typical interrater variability. We then investigated the correlations between the UPDRS scores assigned to the various tasks by both the neurologists and the automatic system. The results, based on a limited number of subjects with Parkinson's disease (PD) (34 patients, 47 clinical trials), show poor-to-moderate correlations between the UPDRS scores of different tasks, highlighting that the patients' motor performance may vary significantly from one task to another, since different tasks relate to different aspects of the disease. An aggregate UPDRS score is also considered as a concise parameter, which can provide additional information on the overall level of the motor impairments of a Parkinson's patient. Finally, we discuss a possible implementation of a practical e-health application for the remote monitoring of PD patients.
最近,我们提出了一种基于身体传感器网络的方法,由几个佩戴在身体上的无线惯性节点组成,用于自动分配统一帕金森病评定量表(UPDRS)分数,涵盖以下任务:腿部敏捷度(LA)、坐站(S2S)和步态(G)。与我们之前的工作和大多数已发表的研究不同,之前的研究仅关注 UPDRS 任务,在本文中,我们对 LA、S2S 和 G 任务进行了比较研究。特别是,在为三个任务的运动学特征识别提供准确描述之后,我们对最相关的运动学参数与 UPDRS 评分之间的相关性进行了评论。我们分析了自动 UPDRS 评分系统的性能,并比较了自动系统和神经科医生评估的 UPDRS 评分,结果表明所提出的系统与典型的评分者间变异性相当。然后,我们研究了神经科医生和自动系统为不同任务分配的 UPDRS 评分之间的相关性。基于患有帕金森病(PD)的患者(34 名患者,47 次临床试验)数量有限,结果表明,不同任务的 UPDRS 评分之间的相关性较差到中等,突出表明患者的运动表现可能因任务而异,因为不同的任务与疾病的不同方面有关。综合 UPDRS 评分也被认为是一个简洁的参数,它可以提供有关帕金森病患者运动障碍总体水平的额外信息。最后,我们讨论了一种用于远程监测 PD 患者的实用电子健康应用程序的可能实现方式。