Suppr超能文献

肺巨噬细胞在疾病易感性方面的异质性。

The heterogeneity of lung macrophages in the susceptibility to disease.

作者信息

Morales-Nebreda Luisa, Misharin Alexander V, Perlman Harris, Budinger G R Scott

机构信息

Dept of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.

Dept of Medicine, Division of Rheumatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.

出版信息

Eur Respir Rev. 2015 Sep;24(137):505-9. doi: 10.1183/16000617.0031-2015.

Abstract

Alveolar macrophages are specialised resident phagocytes in the alveolus, constituting the first line of immune cellular defence in the lung. As the lung microenvironment is challenged and remodelled by inhaled pathogens and air particles, so is the alveolar macrophage pool altered by signals that maintain and/or replace its composition. The signals that induce the recruitment of circulating monocytes to the injured lung, as well as their distinct gene expression profile and susceptibility to epigenetic reprogramming by the local environment remain unclear. In this review, we summarise the unique characteristics of the alveolar macrophage pool ontogeny, phenotypic heterogeneity and plasticity during homeostasis, tissue injury and normal ageing. We also discuss new evidence arising from recent studies where investigators described how the epigenetic landscape drives the specific gene expression profile of alveolar macrophages. Altogether, new analysis of macrophages by means of "omic" technologies will allow us to identify key pathways by which these cells contribute to the development and resolution of lung disease in both mice and humans.

摘要

肺泡巨噬细胞是肺泡中特化的常驻吞噬细胞,构成肺部免疫细胞防御的第一道防线。随着肺部微环境受到吸入病原体和空气颗粒的挑战与重塑,肺泡巨噬细胞池也会因维持和/或改变其组成的信号而发生改变。诱导循环单核细胞募集至损伤肺部的信号,以及它们独特的基因表达谱和对局部环境表观遗传重编程的敏感性仍不清楚。在本综述中,我们总结了肺泡巨噬细胞池在稳态、组织损伤和正常衰老过程中的独特特征,包括个体发生、表型异质性和可塑性。我们还讨论了近期研究产生的新证据,其中研究人员描述了表观遗传格局如何驱动肺泡巨噬细胞的特定基因表达谱。总之,通过“组学”技术对巨噬细胞进行新的分析,将使我们能够识别这些细胞在小鼠和人类肺部疾病发生和消退过程中发挥作用的关键途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b85e/9487691/ae042e831ad5/ERR-0031-2015.01.jpg

相似文献

1
The heterogeneity of lung macrophages in the susceptibility to disease.
Eur Respir Rev. 2015 Sep;24(137):505-9. doi: 10.1183/16000617.0031-2015.
2
Alveolar Macrophages.
Cell Immunol. 2018 Aug;330:86-90. doi: 10.1016/j.cellimm.2018.01.005. Epub 2018 Jan 20.
3
Proteomics: An advanced tool to unravel the role of alveolar macrophages in respiratory diseases.
Int J Biochem Cell Biol. 2021 May;134:105966. doi: 10.1016/j.biocel.2021.105966. Epub 2021 Mar 5.
4
Does tissue imprinting restrict macrophage plasticity?
Nat Immunol. 2021 Feb;22(2):118-127. doi: 10.1038/s41590-020-00849-2. Epub 2021 Jan 18.
5
Alveolar and lung interstitial macrophages: Definitions, functions, and roles in lung fibrosis.
J Leukoc Biol. 2021 Jul;110(1):107-114. doi: 10.1002/JLB.3RU0720-418R. Epub 2020 Nov 6.
6
Origin and ontogeny of lung macrophages: from mice to humans.
Immunology. 2020 Jun;160(2):126-138. doi: 10.1111/imm.13154. Epub 2019 Dec 4.
7
The guardians of pulmonary harmony: alveolar macrophages orchestrating the symphony of lung inflammation and tissue homeostasis.
Eur Respir Rev. 2024 May 29;33(172). doi: 10.1183/16000617.0263-2023. Print 2024 Apr 30.
8
Pulmonary macrophages and their different roles in health and disease.
Int J Biochem Cell Biol. 2021 Dec;141:106095. doi: 10.1016/j.biocel.2021.106095. Epub 2021 Oct 13.
9
Alveolar macrophages are epigenetically altered after inflammation, leading to long-term lung immunoparalysis.
Nat Immunol. 2020 Jun;21(6):636-648. doi: 10.1038/s41590-020-0673-x. Epub 2020 May 18.

引用本文的文献

3
Targeting alveolar macrophages: a promising intervention for pulmonary infection and acute lung injury.
Cell Mol Biol Lett. 2025 Jun 14;30(1):69. doi: 10.1186/s11658-025-00750-6.
4
Cardiac macrophage: Insights from murine models to translational potential for human studies.
J Mol Cell Cardiol. 2025 Jul;204:17-31. doi: 10.1016/j.yjmcc.2025.05.001. Epub 2025 May 10.
5
TREM2 promotes lung fibrosis via controlling alveolar macrophage survival and pro-fibrotic activity.
Nat Commun. 2025 Feb 19;16(1):1761. doi: 10.1038/s41467-025-57024-0.
6
Macrophages and the microbiome in chronic obstructive pulmonary disease.
Eur Respir Rev. 2024 Dec 4;33(174). doi: 10.1183/16000617.0053-2024. Print 2024 Oct.
7
Ezrin drives adaptation of monocytes to the inflamed lung microenvironment.
Cell Death Dis. 2024 Nov 29;15(11):864. doi: 10.1038/s41419-024-07255-8.
8
Macrophage Dysfunction in Respiratory Disease.
Results Probl Cell Differ. 2024;74:239-256. doi: 10.1007/978-3-031-65944-7_9.
10
Aconitate decarboxylase 1 mediates the acute airway inflammatory response to environmental exposures.
Front Immunol. 2024 Sep 16;15:1432334. doi: 10.3389/fimmu.2024.1432334. eCollection 2024.

本文引用的文献

2
The development and function of lung-resident macrophages and dendritic cells.
Nat Immunol. 2015 Jan;16(1):36-44. doi: 10.1038/ni.3052.
4
Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment.
Cell. 2014 Dec 4;159(6):1312-26. doi: 10.1016/j.cell.2014.11.018.
5
Mononuclear phagocytes of the intestine, the skin, and the lung.
Immunol Rev. 2014 Nov;262(1):9-24. doi: 10.1111/imr.12220.
7
Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity.
Science. 2014 Sep 26;345(6204):1251086. doi: 10.1126/science.1251086.
8
Macrophage activation and polarization: nomenclature and experimental guidelines.
Immunity. 2014 Jul 17;41(1):14-20. doi: 10.1016/j.immuni.2014.06.008.
9
Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq.
Nature. 2014 May 15;509(7500):371-5. doi: 10.1038/nature13173. Epub 2014 Apr 13.
10
Transcriptome-based network analysis reveals a spectrum model of human macrophage activation.
Immunity. 2014 Feb 20;40(2):274-88. doi: 10.1016/j.immuni.2014.01.006. Epub 2014 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验