Suppr超能文献

句子真值的量化、预测及在线影响:来自事件相关电位的证据。

Quantification, prediction, and the online impact of sentence truth-value: Evidence from event-related potentials.

作者信息

Nieuwland Mante S

机构信息

University of Edinburgh.

出版信息

J Exp Psychol Learn Mem Cogn. 2016 Feb;42(2):316-34. doi: 10.1037/xlm0000173. Epub 2015 Aug 10.

Abstract

Do negative quantifiers like "few" reduce people's ability to rapidly evaluate incoming language with respect to world knowledge? Previous research has addressed this question by examining whether online measures of quantifier comprehension match the "final" interpretation reflected in verification judgments. However, these studies confounded quantifier valence with its impact on the unfolding expectations for upcoming words, yielding mixed results. In the current event-related potentials study, participants read negative and positive quantifier sentences matched on cloze probability and on truth-value (e.g., "Most/Few gardeners plant their flowers during the spring/winter for best results"). Regardless of whether participants explicitly verified the sentences or not, true-positive quantifier sentences elicited reduced N400s compared with false-positive quantifier sentences, reflecting the facilitated semantic retrieval of words that render a sentence true. No such facilitation was seen in negative quantifier sentences. However, mixed-effects model analyses (with cloze value and truth-value as continuous predictors) revealed that decreasing cloze values were associated with an interaction pattern between truth-value and quantifier, whereas increasing cloze values were associated with more similar truth-value effects regardless of quantifier. Quantifier sentences are thus understood neither always in 2 sequential stages, nor always in a partial-incremental fashion, nor always in a maximally incremental fashion. Instead, and in accordance with prediction-based views of sentence comprehension, quantifier sentence comprehension depends on incorporation of quantifier meaning into an online, knowledge-based prediction for upcoming words. Fully incremental quantifier interpretation occurs when quantifiers are incorporated into sufficiently strong online predictions for upcoming words.

摘要

像“few”这样的否定量词会降低人们根据世界知识快速评估输入语言的能力吗?先前的研究通过考察量词理解的在线测量是否与验证判断中反映的“最终”解释相匹配来解决这个问题。然而,这些研究将量词的效价与其对即将出现的单词的展开预期的影响混为一谈,结果好坏参半。在当前的事件相关电位研究中,参与者阅读了在完形概率和真值上匹配的否定和肯定量词句子(例如,“大多数/少数园丁在春天/冬天种花以获得最佳效果”)。无论参与者是否明确验证句子,与假肯定量词句子相比,真肯定量词句子引发的N400波幅降低,这反映了使句子为真的单词的语义检索更容易。在否定量词句子中没有看到这种促进作用。然而,混合效应模型分析(将完形值和真值作为连续预测变量)显示,完形值的降低与真值和量词之间的交互模式相关,而完形值的增加与无论量词如何都更相似的真值效应相关。因此,量词句子的理解既不总是分两个连续阶段进行,也不总是以部分增量的方式进行,也不总是以最大增量的方式进行。相反,根据基于预测的句子理解观点,量词句子的理解取决于将量词的含义纳入对即将出现的单词的在线基于知识的预测中。当量词被纳入对即将出现的单词足够强的在线预测中时,就会出现完全增量的量词解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a33/4734228/d72bf7432bd5/xlm_42_2_316_fig1a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验