Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA.
Department of Electrical and Computing Engineering, University of California, Riverside, CA 92521, USA.
Sci Adv. 2019 Apr 26;5(4):eaau8170. doi: 10.1126/sciadv.aau8170. eCollection 2019 Apr.
Neuromorphic computing is an approach to efficiently solve complicated learning and cognition problems like the human brain using electronics. To efficiently implement the functionality of biological neurons, nanodevices and their implementations in circuits are exploited. Here, we describe a general-purpose spiking neuromorphic system that can solve on-the-fly learning problems, based on magnetic domain wall analog memristors (MAMs) that exhibit many different states with persistence over the lifetime of the device. The research includes micromagnetic and SPICE modeling of the MAM, CMOS neuromorphic analog circuit design of synapses incorporating the MAM, and the design of hybrid CMOS/MAM spiking neuronal networks in which the MAM provides variable synapse strength with persistence. Using this neuronal neuromorphic system, simulations show that the MAM-boosted neuromorphic system can achieve persistence, can demonstrate deterministic fast on-the-fly learning with the potential for reduced circuitry complexity, and can provide increased capabilities over an all-CMOS implementation.
神经形态计算是一种使用电子设备高效解决复杂学习和认知问题的方法,类似于人脑的工作方式。为了高效实现生物神经元的功能,利用了纳米器件及其在电路中的实现。在这里,我们描述了一种通用的尖峰神经形态系统,该系统可以基于具有持久性的磁性畴壁模拟忆阻器(MAM)解决实时学习问题,MAM 具有许多不同的状态,并且在器件的整个生命周期内都能保持。该研究包括 MAM 的微磁和 SPICE 建模、包含 MAM 的突触的 CMOS 神经形态模拟电路设计,以及混合 CMOS/MAM 尖峰神经元网络的设计,其中 MAM 提供具有持久性的可变突触强度。使用这种神经元神经形态系统,模拟表明,MAM 增强的神经形态系统可以实现持久性,可以展示具有降低电路复杂性潜力的确定性快速实时学习,并可以提供比全 CMOS 实现更高的性能。