Suppr超能文献

展示在灵活的神经形态硬件系统中的混合学习。

Demonstrating Hybrid Learning in a Flexible Neuromorphic Hardware System.

出版信息

IEEE Trans Biomed Circuits Syst. 2017 Feb;11(1):128-142. doi: 10.1109/TBCAS.2016.2579164. Epub 2016 Sep 9.

Abstract

We present results from a new approach to learning and plasticity in neuromorphic hardware systems: to enable flexibility in implementable learning mechanisms while keeping high efficiency associated with neuromorphic implementations, we combine a general-purpose processor with full-custom analog elements. This processor is operating in parallel with a fully parallel neuromorphic system consisting of an array of synapses connected to analog, continuous time neuron circuits. Novel analog correlation sensor circuits process spike events for each synapse in parallel and in real-time. The processor uses this pre-processing to compute new weights possibly using additional information following its program. Therefore, to a certain extent, learning rules can be defined in software giving a large degree of flexibility. Synapses realize correlation detection geared towards Spike-Timing Dependent Plasticity (STDP) as central computational primitive in the analog domain. Operating at a speed-up factor of 1000 compared to biological time-scale, we measure time-constants from tens to hundreds of micro-seconds. We analyze variability across multiple chips and demonstrate learning using a multiplicative STDP rule. We conclude that the presented approach will enable flexible and efficient learning as a platform for neuroscientific research and technological applications.

摘要

我们提出了一种新的神经形态硬件系统学习和可塑性方法的结果

为了在保持与神经形态实现相关的高效率的同时实现可实现学习机制的灵活性,我们将通用处理器与全定制模拟元件相结合。该处理器与由连接到模拟、连续时间神经元电路的突触阵列组成的全并行神经形态系统并行运行。新型模拟相关传感器电路为每个突触并行实时处理尖峰事件。处理器使用此预处理根据其程序使用附加信息来计算新的权重。因此,在某种程度上,可以在软件中定义学习规则,从而提供很大的灵活性。突触实现相关检测作为模拟域中的核心计算基元,针对尖峰时间依赖性可塑性(STDP)。与生物时间尺度相比,我们的操作速度提高了 1000 倍,可以测量数十到数百微秒的时间常数。我们分析了多个芯片的变异性,并展示了使用乘法 STDP 规则的学习。我们得出的结论是,所提出的方法将作为神经科学研究和技术应用的平台,实现灵活高效的学习。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验