Wang Miao, Zhu Chen, Kohne Meghan, Warncke Kurt
Department of Physics, Emory University, N201 Mathematics and Science Center, Atlanta, Georgia, USA.
Department of Physics, Emory University, N201 Mathematics and Science Center, Atlanta, Georgia, USA.
Methods Enzymol. 2015;563:59-94. doi: 10.1016/bs.mie.2015.08.015. Epub 2015 Sep 14.
Approaches to the resolution and characterization of individual chemical steps in enzyme catalytic sequences, by using temperatures in the cryogenic range of 190-250 K, and kinetics measured by time-resolved, full-spectrum electron paramagnetic resonance spectroscopy in fluid cryosolvent and frozen solution systems, are described. The preparation and performance of the adenosylcobalamin-dependent ethanolamine ammonia-lyase enzyme from Salmonella typhimurium in the two systems exemplifies the biochemical and spectroscopic methods. General advantages of low-temperature studies are (1) slowing of reaction steps, so that measurements can be made by using straightforward T-step kinetic methods and commercial instrumentation, (2) resolution of individual reaction steps, so that first-order kinetic analysis can be applied, and (3) accumulation of intermediates that are not detectable at room temperatures. The broad temperature range from room temperature to 190 K encompasses three regimes: (1) temperature-independent mean free energy surface (corresponding to native behavior); (2) the narrow temperature region of a glass-like transition in the protein, over which the free energy surface changes, revealing dependence of the native reaction on collective protein/solvent motions; and (3) the temperature range below the glass transition region, for which persistent reaction corresponds to nonnative, alternative reaction pathways, in the vicinity of the native configurational envelope. Representative outcomes of low-temperature kinetics studies are portrayed on Eyring and free energy surface (landscape) plots, and guidelines for interpretations are presented.
本文描述了通过使用190 - 250 K低温范围内的温度,以及在流体低温溶剂和冷冻溶液系统中通过时间分辨全谱电子顺磁共振光谱测量动力学,来解析和表征酶催化序列中各个化学步骤的方法。鼠伤寒沙门氏菌中腺苷钴胺素依赖性乙醇胺氨裂解酶在这两种系统中的制备和性能例证了生化和光谱方法。低温研究的一般优点包括:(1)反应步骤减慢,从而可以使用直接的T步动力学方法和商业仪器进行测量;(2)解析各个反应步骤,从而可以应用一级动力学分析;(3)积累在室温下无法检测到的中间体。从室温到190 K的宽温度范围涵盖三个区域:(1)与天然行为相对应的温度无关的平均自由能表面;(2)蛋白质中类似玻璃态转变的狭窄温度区域,在此区域自由能表面发生变化,揭示天然反应对蛋白质/溶剂集体运动的依赖性;(3)低于玻璃态转变区域的温度范围,在此温度范围内持续反应对应于天然构型包络附近的非天然替代反应途径。低温动力学研究的代表性结果在艾林图和自由能表面(景观)图上进行了描绘,并给出了解释指南。