Linko Veikko, Shen Boxuan, Tapio Kosti, Toppari J Jussi, Kostiainen Mauri A, Tuukkanen Sampo
Aalto University, Department of Biotechnology and Chemical Technology, Biohybrid Materials, Espoo, P.O. Box 16100, FI-00076 Aalto, Finland.
University of Jyvaskyla, Department of Physics, Nanoscience Center, Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä, Finland.
Sci Rep. 2015 Oct 23;5:15634. doi: 10.1038/srep15634.
DNA origami nanostructures have tremendous potential to serve as versatile platforms in self-assembly -based nanofabrication and in highly parallel nanoscale patterning. However, uniform deposition and reliable anchoring of DNA nanostructures often requires specific conditions, such as pre-treatment of the chosen substrate or a fine-tuned salt concentration for the deposition buffer. In addition, currently available deposition techniques are suitable merely for small scales. In this article, we exploit a spray-coating technique in order to resolve the aforementioned issues in the deposition of different 2D and 3D DNA origami nanostructures. We show that purified DNA origamis can be controllably deposited on silicon and glass substrates by the proposed method. The results are verified using either atomic force microscopy or fluorescence microscopy depending on the shape of the DNA origami. DNA origamis are successfully deposited onto untreated substrates with surface coverage of about 4 objects/mm(2). Further, the DNA nanostructures maintain their shape even if the salt residues are removed from the DNA origami fabrication buffer after the folding procedure. We believe that the presented one-step spray-coating method will find use in various fields of material sciences, especially in the development of DNA biochips and in the fabrication of metamaterials and plasmonic devices through DNA metallisation.
DNA折纸纳米结构在基于自组装的纳米制造以及高度并行的纳米级图案化方面具有巨大潜力,可作为多功能平台。然而,DNA纳米结构的均匀沉积和可靠锚定通常需要特定条件,例如对所选基板进行预处理或对沉积缓冲液的盐浓度进行微调。此外,目前可用的沉积技术仅适用于小规模。在本文中,我们采用喷涂技术来解决不同二维和三维DNA折纸纳米结构沉积中的上述问题。我们表明,通过所提出的方法可以将纯化的DNA折纸可控地沉积在硅和玻璃基板上。根据DNA折纸的形状,使用原子力显微镜或荧光显微镜对结果进行验证。DNA折纸成功沉积在未处理的基板上,表面覆盖率约为4个物体/平方毫米。此外,即使在折叠过程后从DNA折纸制造缓冲液中去除盐残留物,DNA纳米结构仍能保持其形状。我们相信,所提出的一步喷涂方法将在材料科学的各个领域得到应用,特别是在DNA生物芯片的开发以及通过DNA金属化制造超材料和等离子体器件方面。