Pusch Andreas, De Luca Andrea, Oh Sang S, Wuestner Sebastian, Roschuk Tyler, Chen Yiguo, Boual Sophie, Ali Zeeshan, Phillips Chris C, Hong Minghui, Maier Stefan A, Udrea Florin, Hopper Richard H, Hess Ortwin
The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK.
Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK.
Sci Rep. 2015 Dec 7;5:17451. doi: 10.1038/srep17451.
The application of plasmonics to thermal emitters is generally assisted by absorptive losses in the metal because Kirchhoff's law prescribes that only good absorbers make good thermal emitters. Based on a designed plasmonic crystal and exploiting a slow-wave lattice resonance and spontaneous thermal plasmon emission, we engineer a tungsten-based thermal emitter, fabricated in an industrial CMOS process, and demonstrate its markedly improved practical use in a prototype non-dispersive infrared (NDIR) gas-sensing device. We show that the emission intensity of the thermal emitter at the CO(2) absorption wavelength is enhanced almost 4-fold compared to a standard non-plasmonic emitter, which enables a proportionate increase in the signal-to-noise ratio of the CO(2) gas sensor.
等离激元学在热发射器中的应用通常借助金属中的吸收损耗,因为基尔霍夫定律规定只有良好的吸收体才能成为良好的热发射器。基于设计的等离激元晶体,并利用慢波晶格共振和自发热等离激元发射,我们设计了一种采用工业CMOS工艺制造的钨基热发射器,并在原型非色散红外(NDIR)气体传感装置中展示了其显著改善的实际应用效果。我们表明,与标准非等离激元发射器相比,该热发射器在CO₂吸收波长处的发射强度提高了近4倍,这使得CO₂气体传感器的信噪比相应增加。