Suppr超能文献

基于本征半导体的近红外-可见高选择性热发射器。

Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor.

机构信息

Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510, Japan.

Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510, Japan.; Energy Technology Laboratories, Osaka Gas Co. Ltd., 6-19-9 Torishima, Konohana-Ku, Osaka 554-0051, Japan.

出版信息

Sci Adv. 2016 Dec 23;2(12):e1600499. doi: 10.1126/sciadv.1600499. eCollection 2016 Dec.

Abstract

Control of the thermal emission spectra of emitters will result in improved energy utilization efficiency in a broad range of fields, including lighting, energy harvesting, and sensing. In particular, it is challenging to realize a highly selective thermal emitter in the near-infrared-to-visible range, in which unwanted thermal emission spectral components at longer wavelengths are significantly suppressed, whereas strong emission in the near-infrared-to-visible range is retained. To achieve this, we propose an emitter based on interband transitions in a nanostructured intrinsic semiconductor. The electron thermal fluctuations are first limited to the higher-frequency side of the spectrum, above the semiconductor bandgap, and are then enhanced by the photonic resonance of the structure. Theoretical calculations indicate that optimized intrinsic Si rod-array emitters with a rod radius of 105 nm can convert 59% of the input power into emission of wavelengths shorter than 1100 nm at 1400 K. It is also theoretically indicated that emitters with a rod radius of 190 nm can convert 84% of the input power into emission of <1800-nm wavelength at 1400 K. Experimentally, we fabricated a Si rod-array emitter that exhibited a high peak emissivity of 0.77 at a wavelength of 790 nm and a very low background emissivity of <0.02 to 0.05 at 1100 to 7000 nm, under operation at 1273 K. Use of a nanostructured intrinsic semiconductor that can withstand high temperatures is promising for the development of highly efficient thermal emitters operating in the near-infrared-to-visible range.

摘要

控制发射器的热发射光谱将提高包括照明、能量收集和传感在内的广泛领域的能源利用效率。特别是,在近红外到可见光范围内实现高选择性热发射器具有挑战性,其中较长波长的不需要的热发射光谱分量被显著抑制,而近红外到可见光范围内的强发射得以保留。为了实现这一目标,我们提出了一种基于纳米结构本征半导体中带间跃迁的发射器。电子热涨落首先被限制在频谱的高频侧,即半导体带隙以上,然后被结构的光子共振增强。理论计算表明,优化的具有 105nm 棒半径的本征 Si 棒阵列发射器可以将 59%的输入功率转换为在 1400K 时波长小于 1100nm 的发射。理论上还表明,棒半径为 190nm 的发射器可以将 1400K 时波长小于 1800nm 的输入功率的 84%转换为发射。实验上,我们制造了一种 Si 棒阵列发射器,在 1273K 下工作时,在 790nm 处表现出 0.77 的高峰值发射率,在 1100nm 到 7000nm 范围内的背景发射率非常低,小于 0.02 到 0.05。使用能够承受高温的纳米结构本征半导体有望开发在近红外到可见光范围内运行的高效热发射器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c22/5182050/18af09af3bef/1600499-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验