Friston Karl, Zeidman Peter, Litvak Vladimir
The Wellcome Trust Centre for Neuroimaging, University College London London, UK.
Front Syst Neurosci. 2015 Nov 27;9:164. doi: 10.3389/fnsys.2015.00164. eCollection 2015.
This technical note considers a simple but important methodological issue in estimating effective connectivity; namely, how do we integrate measurements from multiple subjects to infer functional brain architectures that are conserved over subjects. We offer a solution to this problem that rests on a generalization of random effects analyses to Bayesian inference about nonlinear models of electrophysiological time-series data. Specifically, we present an empirical Bayesian scheme for group or hierarchical models, in the setting of dynamic causal modeling (DCM). Recent developments in approximate Bayesian inference for hierarchical models enable the efficient estimation of group effects in DCM studies of multiple trials, sessions, or subjects. This approach estimates second (e.g., between-subject) level parameters based on posterior estimates from the first (e.g., within-subject) level. Here, we use empirical priors from the second level to iteratively optimize posterior densities over parameters at the first level. The motivation for this iterative application is to finesse the local minima problem inherent in the (first level) inversion of nonlinear and ill-posed models. Effectively, the empirical priors shrink the first level parameter estimates toward the global maximum, to provide more robust and efficient estimates of within (and between-subject) effects. This paper describes the inversion scheme using a worked example based upon simulated electrophysiological responses. In a subsequent paper, we will assess its robustness and reproducibility using an empirical example.
本技术说明探讨了估计有效连接性时一个简单但重要的方法学问题;即,我们如何整合来自多个受试者的测量数据,以推断受试者间保守的功能性脑结构。我们为这个问题提供了一个解决方案,该方案基于将随机效应分析推广到对电生理时间序列数据的非线性模型进行贝叶斯推断。具体而言,我们在动态因果模型(DCM)的背景下,提出了一种用于组模型或层次模型的经验贝叶斯方案。层次模型的近似贝叶斯推断的最新进展使得在对多个试验、会话或受试者的DCM研究中能够有效地估计组效应。这种方法基于第一(例如,受试者内)水平的后验估计来估计第二(例如,受试者间)水平的参数。在这里,我们使用来自第二水平的经验先验来迭代地优化第一水平参数的后验密度。这种迭代应用的动机是巧妙处理非线性和不适定模型(第一水平)反演中固有的局部极小值问题。实际上,经验先验将第一水平参数估计值向全局最大值收缩,以提供对受试者内(和受试者间)效应更稳健和有效的估计。本文使用基于模拟电生理反应的实例描述了反演方案。在后续论文中,我们将使用一个实证例子评估其稳健性和可重复性。