Ho Hung Chak, Knudby Anders, Huang Wei
Department of Geography, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
Department of Geography, Earth and Environmental Sciences, Okanagan College, Kelowna, BC V1Y 4X8, Canada.
Int J Environ Res Public Health. 2015 Dec 18;12(12):16110-23. doi: 10.3390/ijerph121215046.
In the last few decades extreme heat events have led to substantial excess mortality, most dramatically in Central Europe in 2003, in Russia in 2010, and even in typically cool locations such as Vancouver, Canada, in 2009. Heat-related morbidity and mortality is expected to increase over the coming centuries as the result of climate-driven global increases in the severity and frequency of extreme heat events. Spatial information on heat exposure and population vulnerability may be combined to map the areas of highest risk and focus mitigation efforts there. However, a mismatch in spatial resolution between heat exposure and vulnerability data can cause spatial scale issues such as the Modifiable Areal Unit Problem (MAUP). We used a raster-based model to integrate heat exposure and vulnerability data in a multi-criteria decision analysis, and compared it to the traditional vector-based model. We then used the Getis-Ord G(i) index to generate spatially smoothed heat risk hotspot maps from fine to coarse spatial scales. The raster-based model allowed production of maps at spatial resolution, more description of local-scale heat risk variability, and identification of heat-risk areas not identified with the vector-based approach. Spatial smoothing with the Getis-Ord G(i) index produced heat risk hotspots from local to regional spatial scale. The approach is a framework for reducing spatial scale issues in future heat risk mapping, and for identifying heat risk hotspots at spatial scales ranging from the block-level to the municipality level.
在过去几十年中,极端高温事件已导致大量超额死亡,最显著的是2003年在中欧、2010年在俄罗斯,甚至在2009年在加拿大温哥华这样通常凉爽的地区。由于气候驱动全球极端高温事件的严重程度和频率增加,预计未来几个世纪与高温相关的发病率和死亡率将会上升。有关高温暴露和人口脆弱性的空间信息可以结合起来,绘制出风险最高的区域,并将缓解措施集中在这些区域。然而,高温暴露数据和脆弱性数据之间的空间分辨率不匹配可能会导致空间尺度问题,如可变面积单元问题(MAUP)。我们使用基于栅格的模型,在多标准决策分析中整合高温暴露和脆弱性数据,并将其与传统的基于矢量的模型进行比较。然后,我们使用Getis-Ord G(i)指数生成从精细到粗略空间尺度的空间平滑高温风险热点图。基于栅格的模型能够以空间分辨率生成地图,更详细地描述局部尺度的高温风险变异性,并识别基于矢量方法未识别的高温风险区域。使用Getis-Ord G(i)指数进行空间平滑,可生成从局部到区域空间尺度的高温风险热点。该方法是一个框架,用于减少未来高温风险地图绘制中的空间尺度问题,并识别从街区层面到市层面的空间尺度上的高温风险热点。