Unité Mixte de Physique CNRS/Thales and Université Paris Sud, 91767 Palaiseau, France.
Institute of Advanced Industrial Science and Technology (AIST), Spintronics Research Center, Tsukuba, 305-8560 Japan.
Nat Nanotechnol. 2016 Apr;11(4):360-4. doi: 10.1038/nnano.2015.295. Epub 2016 Jan 4.
It has been proposed that high-frequency detectors based on the so-called spin-torque diode effect in spin transfer oscillators could eventually replace conventional Schottky diodes due to their nanoscale size, frequency tunability and large output sensitivity. Although a promising candidate for information and communications technology applications, the output voltage generated from this effect has still to be improved and, more pertinently, reduces drastically with decreasing radiofrequency (RF) current. Here we present a scheme for a new type of spintronics-based high-frequency detector based on the expulsion of the vortex core in a magnetic tunnel junction (MTJ). The resonant expulsion of the core leads to a large and sharp change in resistance associated with the difference in magnetoresistance between the vortex ground state and the final C-state configuration. Interestingly, this reversible effect is independent of the incoming RF current amplitude, offering a fast real-time RF threshold detector.
有人提出,基于自旋转移振荡器中所谓的自旋扭矩二极管效应的高频探测器由于其纳米尺寸、频率可调谐性和大输出灵敏度,最终可能会取代传统的肖特基二极管。尽管这种效应是信息和通信技术应用的一个很有前途的候选者,但从这种效应产生的输出电压仍有待提高,更重要的是,随着射频(RF)电流的降低,输出电压会急剧下降。在这里,我们提出了一种基于在磁性隧道结(MTJ)中排出涡旋核心的新型基于自旋电子学的高频探测器方案。核心的共振排出导致电阻的大幅急剧变化,这与涡旋基态和最终 C 态配置之间的磁电阻差异有关。有趣的是,这种可逆效应与入射 RF 电流幅度无关,提供了一种快速实时 RF 阈值探测器。