Bamba Takahiro, Hasunuma Tomohisa, Kondo Akihiko
Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
AMB Express. 2016 Mar;6(1):4. doi: 10.1186/s13568-015-0175-7. Epub 2016 Jan 14.
Xylose is the second most abundant sugar in lignocellulosic materials and can be converted to ethanol by recombinant Saccharomyces cerevisiae yeast strains expressing heterologous genes involved in xylose assimilation pathways. Recent research demonstrated that disruption of the alkaline phosphatase gene, PHO13, enhances ethanol production from xylose by a strain expressing the xylose reductase (XR) and xylitol dehydrogenase (XDH) genes; however, the yield of ethanol is poor. In this study, PHO13 was disrupted in a recombinant strain harboring multiple copies of the xylose isomerase (XI) gene derived from Orpinomyces sp., coupled with overexpression of the endogenous xylulokinase (XK) gene and disruption of GRE3, which encodes aldose reductase. The resulting YΔGP/XK/XI strain consumed 2.08 g/L/h of xylose and produced 0.88 g/L/h of volumetric ethanol, for an 86.8 % theoretical ethanol yield, and only YΔGP/XK/XI demonstrated increase in cell concentration. Transcriptome analysis indicated that expression of genes involved in the pentose phosphate pathway (GND1, SOL3, TAL1, RKI1, and TKL1) and TCA cycle and respiratory chain (NDE1, ACO1, ACO2, SDH2, IDH1, IDH2, ATP7, ATP19, SDH4, SDH3, CMC2, and ATP15) was upregulated in the YΔGP/XK/XI strain. And the expression levels of 125 cell cycle genes were changed by deletion of PHO13.
木糖是木质纤维素材料中含量第二丰富的糖类,可通过表达参与木糖同化途径的异源基因的重组酿酒酵母菌株转化为乙醇。最近的研究表明,破坏碱性磷酸酶基因PHO13可提高表达木糖还原酶(XR)和木糖醇脱氢酶(XDH)基因的菌株从木糖生产乙醇的能力;然而,乙醇产量较低。在本研究中,在携带源自奥尔平酵母属的多个木糖异构酶(XI)基因拷贝的重组菌株中破坏PHO13,同时过表达内源性木酮糖激酶(XK)基因并破坏编码醛糖还原酶的GRE3。所得的YΔGP/XK/XI菌株每小时消耗2.08 g/L的木糖,每小时产生0.88 g/L的体积乙醇,理论乙醇产率为86.8%,并且只有YΔGP/XK/XI表现出细胞浓度增加。转录组分析表明,在YΔGP/XK/XI菌株中,参与磷酸戊糖途径(GND1、SOL3、TAL1、RKI1和TKL1)以及三羧酸循环和呼吸链(NDE1、ACO1、ACO2、SDH2、IDH1、IDH2、ATP7、ATP19、SDH4、SDH3、CMC2和ATP15)的基因表达上调。并且通过缺失PHO13改变了125个细胞周期基因的表达水平。