Ba-Alawi Wail, Soufan Othman, Essack Magbubah, Kalnis Panos, Bajic Vladimir B
Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia.
Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Infocloud Group, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia.
J Cheminform. 2016 Mar 16;8:15. doi: 10.1186/s13321-016-0128-4. eCollection 2016.
Identification of novel drug-target interactions (DTIs) is important for drug discovery. Experimental determination of such DTIs is costly and time consuming, hence it necessitates the development of efficient computational methods for the accurate prediction of potential DTIs. To-date, many computational methods have been proposed for this purpose, but they suffer the drawback of a high rate of false positive predictions.
Here, we developed a novel computational DTI prediction method, DASPfind. DASPfind uses simple paths of particular lengths inferred from a graph that describes DTIs, similarities between drugs, and similarities between the protein targets of drugs. We show that on average, over the four gold standard DTI datasets, DASPfind significantly outperforms other existing methods when the single top-ranked predictions are considered, resulting in 46.17 % of these predictions being correct, and it achieves 49.22 % correct single top ranked predictions when the set of all DTIs for a single drug is tested. Furthermore, we demonstrate that our method is best suited for predicting DTIs in cases of drugs with no known targets or with few known targets. We also show the practical use of DASPfind by generating novel predictions for the Ion Channel dataset and validating them manually.
DASPfind is a computational method for finding reliable new interactions between drugs and proteins. We show over six different DTI datasets that DASPfind outperforms other state-of-the-art methods when the single top-ranked predictions are considered, or when a drug with no known targets or with few known targets is considered. We illustrate the usefulness and practicality of DASPfind by predicting novel DTIs for the Ion Channel dataset. The validated predictions suggest that DASPfind can be used as an efficient method to identify correct DTIs, thus reducing the cost of necessary experimental verifications in the process of drug discovery. DASPfind can be accessed online at: http://www.cbrc.kaust.edu.sa/daspfind.Graphical abstractThe conceptual workflow for predicting drug-target interactions using DASPfind.
识别新型药物 - 靶点相互作用(DTIs)对于药物发现至关重要。通过实验确定此类DTIs成本高昂且耗时,因此有必要开发高效的计算方法来准确预测潜在的DTIs。迄今为止,已经为此目的提出了许多计算方法,但它们存在假阳性预测率高的缺点。
在此,我们开发了一种新颖的计算DTI预测方法DASPfind。DASPfind使用从描述DTIs、药物之间的相似性以及药物蛋白质靶点之间的相似性的图中推断出的特定长度的简单路径。我们表明,平均而言,在四个金标准DTI数据集上,当考虑单个排名最高的预测时,DASPfind显著优于其他现有方法,这些预测中有46.17%是正确的,并且当测试单个药物的所有DTIs集合时,它实现了49.22%的正确单个排名最高预测。此外,我们证明我们的方法最适合预测没有已知靶点或已知靶点很少的药物的DTIs。我们还通过为离子通道数据集生成新的预测并手动验证它们来展示DASPfind的实际用途。
DASPfind是一种用于发现药物与蛋白质之间可靠新相互作用的计算方法。我们在六个不同的DTI数据集上表明,当考虑单个排名最高的预测时,或者当考虑没有已知靶点或已知靶点很少的药物时,DASPfind优于其他现有方法。我们通过为离子通道数据集预测新的DTIs来说明DASPfind的有用性和实用性。经过验证的预测表明,DASPfind可以用作识别正确DTIs的有效方法,从而降低药物发现过程中必要实验验证的成本。可在以下网址在线访问DASPfind:http://www.cbrc.kaust.edu.sa/daspfind。
使用DASPfind预测药物 - 靶点相互作用的概念工作流程。