Belavkin Roman V, Channon Alastair, Aston Elizabeth, Aston John, Krašovec Rok, Knight Christopher G
School of Science and Technology, Middlesex University, London, NW4 4BT, UK.
School of Computing and Mathematics, Keele University, Keele, ST5 5BG, UK.
J Math Biol. 2016 Dec;73(6-7):1491-1524. doi: 10.1007/s00285-016-0995-3. Epub 2016 Apr 12.
A common view in evolutionary biology is that mutation rates are minimised. However, studies in combinatorial optimisation and search have shown a clear advantage of using variable mutation rates as a control parameter to optimise the performance of evolutionary algorithms. Much biological theory in this area is based on Ronald Fisher's work, who used Euclidean geometry to study the relation between mutation size and expected fitness of the offspring in infinite phenotypic spaces. Here we reconsider this theory based on the alternative geometry of discrete and finite spaces of DNA sequences. First, we consider the geometric case of fitness being isomorphic to distance from an optimum, and show how problems of optimal mutation rate control can be solved exactly or approximately depending on additional constraints of the problem. Then we consider the general case of fitness communicating only partial information about the distance. We define weak monotonicity of fitness landscapes and prove that this property holds in all landscapes that are continuous and open at the optimum. This theoretical result motivates our hypothesis that optimal mutation rate functions in such landscapes will increase when fitness decreases in some neighbourhood of an optimum, resembling the control functions derived in the geometric case. We test this hypothesis experimentally by analysing approximately optimal mutation rate control functions in 115 complete landscapes of binding scores between DNA sequences and transcription factors. Our findings support the hypothesis and find that the increase of mutation rate is more rapid in landscapes that are less monotonic (more rugged). We discuss the relevance of these findings to living organisms.
进化生物学中的一个普遍观点是,突变率会被降至最低。然而,组合优化与搜索方面的研究表明,将可变突变率用作控制参数来优化进化算法的性能具有明显优势。该领域的许多生物学理论都基于罗纳德·费希尔的研究成果,他运用欧几里得几何来研究无限表型空间中突变大小与后代预期适应度之间的关系。在此,我们基于DNA序列离散和有限空间的另类几何结构重新审视这一理论。首先,我们考虑适应度与到最优值的距离同构的几何情形,并展示根据问题的额外约束条件,最优突变率控制问题是如何得到精确或近似解决的。然后,我们考虑适应度仅传达关于距离的部分信息的一般情形。我们定义了适应度景观的弱单调性,并证明该性质在所有在最优值处连续且开放的景观中都成立。这一理论结果促使我们提出这样的假设:在这样的景观中,当适应度在最优值的某个邻域内下降时,最优突变率函数将会增加,这类似于在几何情形中推导得出的控制函数。我们通过分析DNA序列与转录因子之间结合分数的115个完整景观中的近似最优突变率控制函数,对这一假设进行了实验检验。我们的研究结果支持了这一假设,并发现突变率的增加在单调性较低(更崎岖)的景观中更为迅速。我们讨论了这些发现与生物体的相关性。