Suppr超能文献

用于生物成像的激光合成氧化物钝化明亮硅量子点

Laser-synthesized oxide-passivated bright Si quantum dots for bioimaging.

作者信息

Gongalsky M B, Osminkina L A, Pereira A, Manankov A A, Fedorenko A A, Vasiliev A N, Solovyev V V, Kudryavtsev A A, Sentis M, Kabashin A V, Timoshenko V Yu

机构信息

Lomonosov Moscow State University, Department of Physics, 119991 Moscow, Russia.

Bio-nanophotonics Laboratory, National Research Nuclear University "MEPhI" (Moscow Engineering Physics Institute), 31 Kashirskoe sh., 115409 Moscow, Russia.

出版信息

Sci Rep. 2016 Apr 22;6:24732. doi: 10.1038/srep24732.

Abstract

Crystalline silicon (Si) nanoparticles present an extremely promising object for bioimaging based on photoluminescence (PL) in the visible and near-infrared spectral regions, but their efficient PL emission in aqueous suspension is typically observed after wet chemistry procedures leading to residual toxicity issues. Here, we introduce ultrapure laser-synthesized Si-based quantum dots (QDs), which are water-dispersible and exhibit bright exciton PL in the window of relative tissue transparency near 800 nm. Based on the laser ablation of crystalline Si targets in gaseous helium, followed by ultrasound-assisted dispersion of the deposited films in physiological saline, the proposed method avoids any toxic by-products during the synthesis. We demonstrate efficient contrast of the Si QDs in living cells by following the exciton PL. We also show that the prepared QDs do not provoke any cytoxicity effects while penetrating into the cells and efficiently accumulating near the cell membrane and in the cytoplasm. Combined with the possibility of enabling parallel therapeutic channels, ultrapure laser-synthesized Si nanostructures present unique object for cancer theranostic applications.

摘要

基于可见和近红外光谱区域的光致发光(PL),晶体硅(Si)纳米颗粒是生物成像极具前景的对象,但在湿化学程序后,通常在水悬浮液中观察到其高效的PL发射,这会导致残留毒性问题。在此,我们介绍了超纯激光合成的硅基量子点(QDs),它们可水分散,并在800nm附近相对组织透明的窗口中表现出明亮的激子PL。基于在气态氦中对晶体硅靶进行激光烧蚀,随后通过超声辅助将沉积的薄膜分散在生理盐水中,该方法在合成过程中避免了任何有毒副产物。通过跟踪激子PL,我们证明了硅量子点在活细胞中的有效对比度。我们还表明,制备的量子点在穿透细胞并有效积累在细胞膜附近和细胞质中时,不会引发任何细胞毒性作用。结合启用平行治疗通道的可能性,超纯激光合成的硅纳米结构是癌症诊疗应用的独特对象。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e644/4840388/482a1c0ece5a/srep24732-f1.jpg

相似文献

1
Laser-synthesized oxide-passivated bright Si quantum dots for bioimaging.
Sci Rep. 2016 Apr 22;6:24732. doi: 10.1038/srep24732.
3
Preparation, cytotoxicity and in vivo bioimaging of highly luminescent water-soluble silicon quantum dots.
Nanotechnology. 2015 May 29;26(21):215703. doi: 10.1088/0957-4484/26/21/215703. Epub 2015 May 6.
4
Colloidal synthesis of tunably luminescent AgInS-based/ZnS core/shell quantum dots as biocompatible nano-probe for high-contrast fluorescence bioimaging.
Mater Sci Eng C Mater Biol Appl. 2020 Jun;111:110807. doi: 10.1016/j.msec.2020.110807. Epub 2020 Mar 3.
5
Biocompatible luminescent silicon quantum dots for imaging of cancer cells.
ACS Nano. 2008 May;2(5):873-8. doi: 10.1021/nn700319z.
9
Single molecule localization imaging of exosomes using blinking silicon quantum dots.
Nanotechnology. 2018 Feb 9;29(6):065705. doi: 10.1088/1361-6528/aaa375.
10
Synthesis of fluorescent silicon quantum dots for ultra-rapid and selective sensing of Cr(VI) ion and biomonitoring of cancer cells.
Mater Sci Eng C Mater Biol Appl. 2018 Dec 1;93:429-436. doi: 10.1016/j.msec.2018.08.024. Epub 2018 Aug 8.

引用本文的文献

1
Device Applications Enabled by Bandgap Engineering Through Quantum Dot Tuning: A Review.
Materials (Basel). 2024 Oct 31;17(21):5335. doi: 10.3390/ma17215335.
2
The utilization of quantum dot labeling as a burgeoning technique in the field of biological imaging.
RSC Adv. 2024 Jul 2;14(29):20884-20897. doi: 10.1039/d4ra04402a. eCollection 2024 Jun 27.
6
Advances in Electrospun Hybrid Nanofibers for Biomedical Applications.
Nanomaterials (Basel). 2022 May 27;12(11):1829. doi: 10.3390/nano12111829.
9
Advances in Laser Ablation Synthesized Silicon-Based Nanomaterials for the Prevention of Bacterial Infection.
Nanomaterials (Basel). 2020 Jul 24;10(8):1443. doi: 10.3390/nano10081443.
10
Laser ablation for pharmaceutical nanoformulations: Multi-drug nanoencapsulation and theranostics for HIV.
Nanomedicine. 2020 Apr;25:102172. doi: 10.1016/j.nano.2020.102172. Epub 2020 Feb 13.

本文引用的文献

2
Probing the Cytotoxicity Of Semiconductor Quantum Dots.
Nano Lett. 2004 Jan 1;4(1):11-18. doi: 10.1021/nl0347334. Epub 2003 Dec 10.
3
Near-Unity Internal Quantum Efficiency of Luminescent Silicon Nanocrystals with Ligand Passivation.
ACS Nano. 2015 Jul 28;9(7):7097-104. doi: 10.1021/acsnano.5b01717. Epub 2015 Jun 22.
6
Air-stable full-visible-spectrum emission from silicon nanocrystals synthesized by an all-gas-phase plasma approach.
Nanotechnology. 2008 Jun 18;19(24):245603. doi: 10.1088/0957-4484/19/24/245603. Epub 2008 May 9.
7
Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells.
ACS Nano. 2011 May 24;5(5):3651-9. doi: 10.1021/nn1035262. Epub 2011 Apr 6.
8
Evaluation of genotoxicity and reproductive toxicity of silicon nanocrystals.
Bull Exp Biol Med. 2010 Oct;149(4):445-9. doi: 10.1007/s10517-010-0967-3.
9
Nanofabrication with pulsed lasers.
Nanoscale Res Lett. 2010 Feb 24;5(3):454-63. doi: 10.1007/s11671-010-9543-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验