Suppr超能文献

通过减少警报疲劳提高临床决策支持系统的利用率:策略与建议

Improving Utilization of Clinical Decision Support Systems by Reducing Alert Fatigue: Strategies and Recommendations.

作者信息

Khalifa Mohamed, Zabani Ibrahim

机构信息

King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia.

出版信息

Stud Health Technol Inform. 2016;226:51-4.

Abstract

Clinical decision support systems (CDSS) are designed to help making clinical decisions regarding the management of patients. CDS alerts can save lives but frequent insignificant ones might cause alert fatigue. Studies discuss that 33% to 96% of clinical alerts are ignored. We categorized best evidence based strategies, to reduce alert fatigue and improve CDSS utilization, into five major areas. Classify alerts in to three main levels; severe, moderate and minor then develop a core set of critical drug to drug interactions. Classify alerts into active and passive groups, where only critical alerts should be interruptive actively while less critical alerts should be non-interruptive to the user. Conduct regular user training on new improvements. Keep monitoring alert response rates and keep ongoing research and improvement efforts. Provide systems with automated feedback and learning mechanisms where frequently ignored and justified alerts could be moved automatically from the active interruptive to the passive non-interruptive model.

摘要

临床决策支持系统(CDSS)旨在协助做出有关患者管理的临床决策。CDS警报可以挽救生命,但频繁出现的无关紧要的警报可能会导致警报疲劳。研究表明,33%至96%的临床警报被忽视。我们将基于最佳证据的策略分类,以减少警报疲劳并提高CDSS的利用率,分为五个主要领域。将警报分为三个主要级别:严重、中度和轻度,然后制定一组核心的关键药物相互作用。将警报分为主动和被动组,其中只有关键警报应主动中断,而不太关键的警报应对用户无干扰。定期对用户进行新改进方面的培训。持续监测警报响应率,并不断进行研究和改进工作。为系统提供自动反馈和学习机制,使经常被忽视且合理的警报能够自动从主动中断模式转换为被动无干扰模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验