Nieuwenhuis Mireille, Schnack Hugo G, van Haren Neeltje E, Lappin Julia, Morgan Craig, Reinders Antje A, Gutierrez-Tordesillas Diana, Roiz-Santiañez Roberto, Schaufelberger Maristela S, Rosa Pedro G, Zanetti Marcus V, Busatto Geraldo F, Crespo-Facorro Benedicto, McGorry Patrick D, Velakoulis Dennis, Pantelis Christos, Wood Stephen J, Kahn René S, Mourao-Miranda Janaina, Dazzan Paola
Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands.
Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands.
Neuroimage. 2017 Jan 15;145(Pt B):246-253. doi: 10.1016/j.neuroimage.2016.07.027. Epub 2016 Jul 12.
Structural Magnetic Resonance Imaging (MRI) studies have attempted to use brain measures obtained at the first-episode of psychosis to predict subsequent outcome, with inconsistent results. Thus, there is a real need to validate the utility of brain measures in the prediction of outcome using large datasets, from independent samples, obtained with different protocols and from different MRI scanners. This study had three main aims: 1) to investigate whether structural MRI data from multiple centers can be combined to create a machine-learning model able to predict a strong biological variable like sex; 2) to replicate our previous finding that an MRI scan obtained at first episode significantly predicts subsequent illness course in other independent datasets; and finally, 3) to test whether these datasets can be combined to generate multicenter models with better accuracy in the prediction of illness course. The multi-center sample included brain structural MRI scans from 256 males and 133 females patients with first episode psychosis, acquired in five centers: University Medical Center Utrecht (The Netherlands) (n=67); Institute of Psychiatry, Psychology and Neuroscience, London (United Kingdom) (n=97); University of São Paulo (Brazil) (n=64); University of Cantabria, Santander (Spain) (n=107); and University of Melbourne (Australia) (n=54). All images were acquired on 1.5-Tesla scanners and all centers provided information on illness course during a follow-up period ranging 3 to 7years. We only included in the analyses of outcome prediction patients for whom illness course was categorized as either "continuous" (n=94) or "remitting" (n=118). Using structural brain scans from all centers, sex was predicted with significant accuracy (89%; p<0.001). In the single- or multi-center models, illness course could not be predicted with significant accuracy. However, when reducing heterogeneity by restricting the analyses to male patients only, classification accuracy improved in some samples. This study provides proof of concept that combining multi-center MRI data to create a well performing classification model is possible. However, to create complex multi-center models that perform accurately, each center should contribute a sample either large or homogeneous enough to first allow accurate classification within the single-center.
结构磁共振成像(MRI)研究试图利用在精神病首次发作时获得的脑部测量数据来预测后续结果,但结果并不一致。因此,确实需要使用来自独立样本、通过不同协议并从不同MRI扫描仪获得的大型数据集来验证脑部测量在预测结果中的效用。本研究有三个主要目标:1)研究来自多个中心的结构MRI数据能否合并以创建一个能够预测像性别这样强大生物变量的机器学习模型;2)在其他独立数据集中复制我们之前的发现,即首次发作时获得的MRI扫描能显著预测后续病程;最后,3)测试这些数据集能否合并以生成在预测病程方面具有更高准确性的多中心模型。多中心样本包括来自256名男性和133名女性首次发作精神病患者的脑部结构MRI扫描,这些扫描是在五个中心获取的:荷兰乌得勒支大学医学中心(n = 67);英国伦敦精神病学、心理学和神经科学研究所(n = 97);巴西圣保罗大学(n = 64);西班牙桑坦德坎塔布里亚大学(n = 107);以及澳大利亚墨尔本大学(n = 54)。所有图像均在1.5特斯拉扫描仪上获取,所有中心都提供了随访期为3至7年的病程信息。我们仅将病程分类为“持续”(n = 94)或“缓解”(n = 118)的患者纳入结果预测分析。使用来自所有中心的脑部结构扫描,性别预测具有显著准确性(89%;p < 0.001)。在单中心或多中心模型中,病程无法以显著准确性进行预测。然而,当仅将分析限制在男性患者以减少异质性时,某些样本中的分类准确性有所提高。本研究提供了概念验证,即合并多中心MRI数据以创建性能良好的分类模型是可行的。然而,要创建准确执行的复杂多中心模型,每个中心应贡献足够大或足够同质的样本,以便首先在单中心内实现准确分类。