Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany.
Developmental Biology, Stanford University, Stanford, CA, 94305, USA.
Angew Chem Int Ed Engl. 2016 Oct 17;55(43):13455-13459. doi: 10.1002/anie.201606069. Epub 2016 Jul 28.
The Min proteins from E.coli position the bacterial cell-division machinery through pole-to-pole oscillations. In vitro, Min protein self-organization can be reconstituted in the presence of a lipid membrane as a catalytic surface. However, Min dynamics have so far not been reconstituted in fully membrane-enclosed volumes. Microdroplets interfaced by lipid monolayers were employed as a simple 3D mimic of cellular compartments to reconstitute Min protein oscillations. We demonstrate that lipid monolayers are sufficient to fulfil the catalytic role of the membrane and thus represent a facile platform to investigate Min protein regulated dynamics of the cell-division protein FtsZ-mts. In particular, we show that droplet containers reveal distinct Min oscillation modes, and reveal a dependence of FtsZ-mts structures on compartment size. Finally, co-reconstitution of Min proteins and FtsZ-mts in droplets yields antagonistic localization, thus demonstrating that droplets indeed support the analysis of complex bacterial self-organization in confined volumes.
大肠杆菌 Min 蛋白通过极向振荡来定位细菌的细胞分裂机制。在体外,在脂质膜存在的情况下,Min 蛋白可以自我组织成为一个催化表面。然而,Min 蛋白的动力学迄今为止还没有在完全封闭的膜体积中得到重建。利用界面由脂质单层形成的微滴作为细胞区室的简单 3D 模拟物来重建 Min 蛋白的振荡。我们证明,脂质单层足以发挥膜的催化作用,因此代表了一个简单的平台,可以用来研究 Min 蛋白调节的细胞分裂蛋白 FtsZ-mts 的动力学。具体来说,我们表明液滴容器显示出不同的 Min 振荡模式,并揭示了 FtsZ-mts 结构对隔室大小的依赖性。最后,Min 蛋白和 FtsZ-mts 在液滴中的共重建产生拮抗定位,从而证明液滴确实支持在受限体积中分析复杂的细菌自我组织。