Suppr超能文献

作为一种通用细胞几何形状检测机制的Min系统:Y形大肠杆菌细胞中的分支长度影响Min振荡模式和分裂动力学。

The Min system as a general cell geometry detection mechanism: branch lengths in Y-shaped Escherichia coli cells affect Min oscillation patterns and division dynamics.

作者信息

Varma Archana, Huang Kerwyn Casey, Young Kevin D

机构信息

Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA.

出版信息

J Bacteriol. 2008 Mar;190(6):2106-17. doi: 10.1128/JB.00720-07. Epub 2008 Jan 4.

Abstract

In Escherichia coli, division site placement is regulated by the dynamic behavior of the MinCDE proteins, which oscillate from pole to pole and confine septation to the centers of normal rod-shaped cells. Some current mathematical models explain these oscillations by considering interactions among the Min proteins without recourse to additional localization signals. So far, such models have been applied only to regularly shaped bacteria, but here we test these models further by employing aberrantly shaped E. coli cells as miniature reactors. The locations of MinCDE proteins fused to derivatives of green fluorescent protein were monitored in branched cells with at least three conspicuous poles. MinCDE most often moved from one branch to another in an invariant order, following a nonreversing clockwise or counterclockwise direction over the time periods observed. In cells with two short branches or nubs, the proteins oscillated symmetrically from one end to the other. The locations of FtsZ rings were consistent with a broad MinC-free zone near the branch junctions, and Min rings exhibited the surprising behavior of moving quickly from one possible position to another. Using a reaction-diffusion model that reproduces the observed MinCD oscillations in rod-shaped and round E. coli, we predict that the oscillation patterns in branched cells are a natural response of Min behavior in cellular geometries having different relative branch lengths. The results provide further evidence that Min protein oscillations act as a general cell geometry detection mechanism that can locate poles even in branched cells.

摘要

在大肠杆菌中,细胞分裂位点的定位受MinCDE蛋白动态行为的调控,这些蛋白在两极之间振荡,并将隔膜形成限制在正常杆状细胞的中心。目前一些数学模型通过考虑Min蛋白之间的相互作用来解释这些振荡,而无需借助额外的定位信号。到目前为止,此类模型仅应用于形状规则的细菌,但在此我们通过将形状异常的大肠杆菌细胞用作微型反应器来进一步测试这些模型。监测与绿色荧光蛋白衍生物融合的MinCDE蛋白在具有至少三个明显极的分支细胞中的位置。在观察期间,MinCDE最常按照不变的顺序从一个分支移动到另一个分支,沿顺时针或逆时针方向不可逆地移动。在具有两个短分支或瘤状突起的细胞中,这些蛋白从一端到另一端对称振荡。FtsZ环的位置与分支连接处附近一个宽阔的无MinC区域一致,并且Min环表现出从一个可能位置快速移动到另一个位置的惊人行为。使用一个反应扩散模型,该模型再现了在杆状和圆形大肠杆菌中观察到的MinCD振荡,我们预测分支细胞中的振荡模式是Min行为在具有不同相对分支长度的细胞几何形状中的自然反应。这些结果进一步证明,Min蛋白振荡作为一种通用的细胞几何形状检测机制,即使在分支细胞中也能定位极。

相似文献

2
MinCD cell division proteins form alternating copolymeric cytomotive filaments.
Nat Commun. 2014 Dec 15;5:5341. doi: 10.1038/ncomms6341.
4
The E. coli MinCDE system in the regulation of protein patterns and gradients.
Cell Mol Life Sci. 2019 Nov;76(21):4245-4273. doi: 10.1007/s00018-019-03218-x. Epub 2019 Jul 17.
5
7
FtsZ placement in nucleoid-free bacteria.
PLoS One. 2014 Mar 17;9(3):e91984. doi: 10.1371/journal.pone.0091984. eCollection 2014.
8
Robust Min-system oscillation in the presence of internal photosynthetic membranes in cyanobacteria.
Mol Microbiol. 2017 Feb;103(3):483-503. doi: 10.1111/mmi.13571. Epub 2016 Nov 28.
9
FtsZ Polymers Tethered to the Membrane by ZipA Are Susceptible to Spatial Regulation by Min Waves.
Biophys J. 2015 May 5;108(9):2371-83. doi: 10.1016/j.bpj.2015.03.031.

引用本文的文献

1
E. coli filament buckling modulates Min patterning and cell division.
Nat Commun. 2025 Sep 8;16(1):8193. doi: 10.1038/s41467-025-63509-9.
2
Chromosome segregation dynamics during the cell cycle of .
bioRxiv. 2025 Feb 19:2025.02.18.638847. doi: 10.1101/2025.02.18.638847.
3
The mechanism of MinD stability modulation by MinE in Min protein dynamics.
PLoS Comput Biol. 2023 Nov 17;19(11):e1011615. doi: 10.1371/journal.pcbi.1011615. eCollection 2023 Nov.
4
Feedback linking cell envelope stiffness, curvature, and synthesis enables robust rod-shaped bacterial growth.
Proc Natl Acad Sci U S A. 2022 Oct 11;119(41):e2200728119. doi: 10.1073/pnas.2200728119. Epub 2022 Oct 3.
5
The E. coli MinCDE system in the regulation of protein patterns and gradients.
Cell Mol Life Sci. 2019 Nov;76(21):4245-4273. doi: 10.1007/s00018-019-03218-x. Epub 2019 Jul 17.
6
Division plane placement in pleomorphic archaea is dynamically coupled to cell shape.
Mol Microbiol. 2019 Sep;112(3):785-799. doi: 10.1111/mmi.14316. Epub 2019 Jun 11.
7
Effects of geometry and topography on Min-protein dynamics.
PLoS One. 2018 Aug 30;13(8):e0203050. doi: 10.1371/journal.pone.0203050. eCollection 2018.
8
The Min-protein oscillations in : an example of self-organized cellular protein waves.
Philos Trans R Soc Lond B Biol Sci. 2018 May 26;373(1747). doi: 10.1098/rstb.2017.0111.
9
Self-organization principles of intracellular pattern formation.
Philos Trans R Soc Lond B Biol Sci. 2018 May 26;373(1747). doi: 10.1098/rstb.2017.0107.

本文引用的文献

1
Role of peptidoglycan amidases in the development and morphology of the division septum in Escherichia coli.
J Bacteriol. 2007 Jul;189(14):5334-47. doi: 10.1128/JB.00415-07. Epub 2007 May 4.
2
An experimentalist's guide to computational modelling of the Min system.
Mol Microbiol. 2007 Mar;63(5):1279-84. doi: 10.1111/j.1365-2958.2007.05607.x.
3
The bacterial cytoskeleton.
Microbiol Mol Biol Rev. 2006 Sep;70(3):729-54. doi: 10.1128/MMBR.00017-06.
4
The selective value of bacterial shape.
Microbiol Mol Biol Rev. 2006 Sep;70(3):660-703. doi: 10.1128/MMBR.00001-06.
5
Noise-induced Min phenotypes in E. coli.
PLoS Comput Biol. 2006 Jun 30;2(6):e80. doi: 10.1371/journal.pcbi.0020080. Epub 2006 May 18.
6
MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter.
Cell. 2006 Jul 14;126(1):147-62. doi: 10.1016/j.cell.2006.05.038.
7
Min-protein oscillations in Escherichia coli with spontaneous formation of two-stranded filaments in a three-dimensional stochastic reaction-diffusion model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Feb;73(2 Pt 1):021904. doi: 10.1103/PhysRevE.73.021904. Epub 2006 Feb 13.
8
Division accuracy in a stochastic model of Min oscillations in Escherichia coli.
Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):347-52. doi: 10.1073/pnas.0505825102. Epub 2005 Dec 30.
9
Spatial control of bacterial division-site placement.
Nat Rev Microbiol. 2005 Dec;3(12):959-68. doi: 10.1038/nrmicro1290.
10
The MreB and Min cytoskeletal-like systems play independent roles in prokaryotic polar differentiation.
Mol Microbiol. 2005 Nov;58(4):917-28. doi: 10.1111/j.1365-2958.2005.04841.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验