Suppr超能文献

人类顶内沟前部皮层的脑机接口控制的内在变量学习。

Intrinsic Variable Learning for Brain-Machine Interface Control by Human Anterior Intraparietal Cortex.

机构信息

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125, USA.

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125, USA.

出版信息

Neuron. 2019 May 8;102(3):694-705.e3. doi: 10.1016/j.neuron.2019.02.012. Epub 2019 Mar 7.

Abstract

Although animal studies provided significant insights in understanding the neural basis of learning and adaptation, they often cannot dissociate between different learning mechanisms due to the lack of verbal communication. To overcome this limitation, we examined the mechanisms of learning and its limits in a human intracortical brain-machine interface (BMI) paradigm. A tetraplegic participant controlled a 2D computer cursor by modulating single-neuron activity in the anterior intraparietal area (AIP). By perturbing the neuron-to-movement mapping, the participant learned to modulate the activity of the recorded neurons to solve the perturbations by adopting a target re-aiming strategy. However, when no cognitive strategies were adequate to produce correct responses, AIP failed to adapt to perturbations. These findings suggest that learning is constrained by the pre-existing neuronal structure, although it is possible that AIP needs more training time to learn to generate novel activity patterns when cognitive re-adaptation fails to solve the perturbations.

摘要

尽管动物研究为理解学习和适应的神经基础提供了重要的见解,但由于缺乏语言交流,它们往往无法区分不同的学习机制。为了克服这一限制,我们在人类皮质内脑机接口 (BMI) 范式中研究了学习及其限制的机制。一名四肢瘫痪患者通过在前顶内区 (AIP) 调节单个神经元的活动来控制 2D 计算机光标。通过干扰神经元到运动的映射,参与者学会通过采用目标重新瞄准策略来调节记录神经元的活动以解决干扰。然而,当没有足够的认知策略来产生正确的反应时,AIP 无法适应干扰。这些发现表明,学习受到预先存在的神经元结构的限制,尽管当认知重新适应无法解决干扰时,AIP 可能需要更多的训练时间来学习产生新的活动模式。

相似文献

2
Learned Motor Patterns Are Replayed in Human Motor Cortex during Sleep.在睡眠期间,人类运动皮层中会再现习得的运动模式。
J Neurosci. 2022 Jun 22;42(25):5007-5020. doi: 10.1523/JNEUROSCI.2074-21.2022. Epub 2022 May 19.
3
Brain-machine interface for eye movements.用于眼球运动的脑机接口。
Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17630-5. doi: 10.1073/pnas.1419977111. Epub 2014 Nov 24.
4
Neural constraints on learning.学习中的神经限制
Nature. 2014 Aug 28;512(7515):423-6. doi: 10.1038/nature13665.

引用本文的文献

4
Advancements in brain-machine interfaces for application in the metaverse.用于元宇宙应用的脑机接口的进展。
Front Neurosci. 2024 Jun 11;18:1383319. doi: 10.3389/fnins.2024.1383319. eCollection 2024.
6
Neural Plasticity in Sensorimotor Brain-Machine Interfaces.感觉运动脑机接口中的神经可塑性。
Annu Rev Biomed Eng. 2023 Jun 8;25:51-76. doi: 10.1146/annurev-bioeng-110220-110833. Epub 2023 Feb 28.

本文引用的文献

1
Learning by neural reassociation.神经再关联学习。
Nat Neurosci. 2018 Apr;21(4):607-616. doi: 10.1038/s41593-018-0095-3. Epub 2018 Mar 12.
2
Neural Population Dynamics Underlying Motor Learning Transfer.神经群体动力学在运动学习迁移中的作用。
Neuron. 2018 Mar 7;97(5):1177-1186.e3. doi: 10.1016/j.neuron.2018.01.040. Epub 2018 Feb 15.
3
Partially Mixed Selectivity in Human Posterior Parietal Association Cortex.人类顶叶后联合皮层中的部分混合选择性
Neuron. 2017 Aug 2;95(3):697-708.e4. doi: 10.1016/j.neuron.2017.06.040. Epub 2017 Jul 20.
6
Why neurons mix: high dimensionality for higher cognition.神经元为何混合:高维结构助力更高认知
Curr Opin Neurobiol. 2016 Apr;37:66-74. doi: 10.1016/j.conb.2016.01.010. Epub 2016 Feb 4.
10
Neural constraints on learning.学习中的神经限制
Nature. 2014 Aug 28;512(7515):423-6. doi: 10.1038/nature13665.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验