Li Zhiguo
Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, U.S.A.
Stat Med. 2017 Feb 10;36(3):403-415. doi: 10.1002/sim.7136. Epub 2016 Sep 19.
In sequential multiple assignment randomized trials, longitudinal outcomes may be the most important outcomes of interest because this type of trials is usually conducted in areas of chronic diseases or conditions. We propose to use a weighted generalized estimating equation (GEE) approach to analyzing data from such type of trials for comparing two adaptive treatment strategies based on generalized linear models. Although the randomization probabilities are known, we consider estimated weights in which the randomization probabilities are replaced by their empirical estimates and prove that the resulting weighted GEE estimator is more efficient than the estimators with true weights. The variance of the weighted GEE estimator is estimated by an empirical sandwich estimator. The time variable in the model can be linear, piecewise linear, or more complicated forms. This provides more flexibility that is important because, in the adaptive treatment setting, the treatment changes over time and, hence, a single linear trend over the whole period of study may not be practical. Simulation results show that the weighted GEE estimators of regression coefficients are consistent regardless of the specification of the correlation structure of the longitudinal outcomes. The weighted GEE method is then applied in analyzing data from the Clinical Antipsychotic Trials of Intervention Effectiveness. Copyright © 2016 John Wiley & Sons, Ltd.
在序贯多重分配随机试验中,纵向结局可能是最重要的关注结局,因为这类试验通常在慢性病或慢性疾病领域进行。我们建议使用加权广义估计方程(GEE)方法来分析此类试验的数据,以便基于广义线性模型比较两种适应性治疗策略。尽管随机化概率是已知的,但我们考虑使用估计权重,即将随机化概率替换为其经验估计值,并证明所得的加权GEE估计量比使用真实权重的估计量更有效。加权GEE估计量的方差通过经验三明治估计量进行估计。模型中的时间变量可以是线性、分段线性或更复杂的形式。这提供了更大的灵活性,这很重要,因为在适应性治疗环境中,治疗会随时间变化,因此在整个研究期间采用单一的线性趋势可能并不实际。模拟结果表明,无论纵向结局的相关结构如何指定,回归系数的加权GEE估计量都是一致的。然后将加权GEE方法应用于分析干预有效性临床抗精神病药物试验的数据。版权所有© 2016约翰威立父子有限公司。