Suppr超能文献

基于序贯多重分配随机试验纵向结果的适应性治疗策略比较。

Comparison of adaptive treatment strategies based on longitudinal outcomes in sequential multiple assignment randomized trials.

作者信息

Li Zhiguo

机构信息

Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, U.S.A.

出版信息

Stat Med. 2017 Feb 10;36(3):403-415. doi: 10.1002/sim.7136. Epub 2016 Sep 19.

Abstract

In sequential multiple assignment randomized trials, longitudinal outcomes may be the most important outcomes of interest because this type of trials is usually conducted in areas of chronic diseases or conditions. We propose to use a weighted generalized estimating equation (GEE) approach to analyzing data from such type of trials for comparing two adaptive treatment strategies based on generalized linear models. Although the randomization probabilities are known, we consider estimated weights in which the randomization probabilities are replaced by their empirical estimates and prove that the resulting weighted GEE estimator is more efficient than the estimators with true weights. The variance of the weighted GEE estimator is estimated by an empirical sandwich estimator. The time variable in the model can be linear, piecewise linear, or more complicated forms. This provides more flexibility that is important because, in the adaptive treatment setting, the treatment changes over time and, hence, a single linear trend over the whole period of study may not be practical. Simulation results show that the weighted GEE estimators of regression coefficients are consistent regardless of the specification of the correlation structure of the longitudinal outcomes. The weighted GEE method is then applied in analyzing data from the Clinical Antipsychotic Trials of Intervention Effectiveness. Copyright © 2016 John Wiley & Sons, Ltd.

摘要

在序贯多重分配随机试验中,纵向结局可能是最重要的关注结局,因为这类试验通常在慢性病或慢性疾病领域进行。我们建议使用加权广义估计方程(GEE)方法来分析此类试验的数据,以便基于广义线性模型比较两种适应性治疗策略。尽管随机化概率是已知的,但我们考虑使用估计权重,即将随机化概率替换为其经验估计值,并证明所得的加权GEE估计量比使用真实权重的估计量更有效。加权GEE估计量的方差通过经验三明治估计量进行估计。模型中的时间变量可以是线性、分段线性或更复杂的形式。这提供了更大的灵活性,这很重要,因为在适应性治疗环境中,治疗会随时间变化,因此在整个研究期间采用单一的线性趋势可能并不实际。模拟结果表明,无论纵向结局的相关结构如何指定,回归系数的加权GEE估计量都是一致的。然后将加权GEE方法应用于分析干预有效性临床抗精神病药物试验的数据。版权所有© 2016约翰威立父子有限公司。

相似文献

3
A multiple imputation strategy for sequential multiple assignment randomized trials.
Stat Med. 2014 Oct 30;33(24):4202-14. doi: 10.1002/sim.6223. Epub 2014 Jun 11.
7
Covariate adjustment and estimation of mean response in randomised trials.
Pharm Stat. 2018 Sep;17(5):648-666. doi: 10.1002/pst.1880. Epub 2018 Jul 11.
10
Improving power in small-sample longitudinal studies when using generalized estimating equations.
Stat Med. 2016 Sep 20;35(21):3733-44. doi: 10.1002/sim.6967. Epub 2016 Apr 18.

本文引用的文献

1
Identifying a set that contains the best dynamic treatment regimes.
Biostatistics. 2016 Jan;17(1):135-48. doi: 10.1093/biostatistics/kxv025. Epub 2015 Aug 3.
2
Weighted log-rank statistic to compare shared-path adaptive treatment strategies.
Biostatistics. 2013 Apr;14(2):299-312. doi: 10.1093/biostatistics/kxs042. Epub 2012 Nov 23.
3
Experimental design and primary data analysis methods for comparing adaptive interventions.
Psychol Methods. 2012 Dec;17(4):457-477. doi: 10.1037/a0029372. Epub 2012 Oct 1.
4
Evaluation of Viable Dynamic Treatment Regimes in a Sequentially Randomized Trial of Advanced Prostate Cancer.
J Am Stat Assoc. 2012 Jun;107(498):493-508. doi: 10.1080/01621459.2011.641416.
5
Sample size formulae for two-stage randomized trials with survival outcomes.
Biometrika. 2011 Sep;98(3):503-518. doi: 10.1093/biomet/asr019. Epub 2011 Jul 13.
6
Up-front versus sequential randomizations for inference on adaptive treatment strategies.
Stat Med. 2012 Apr 30;31(9):812-30. doi: 10.1002/sim.4473. Epub 2012 Feb 23.
8
Weighted Kaplan-Meier estimators for two-stage treatment regimes.
Stat Med. 2010 Nov 10;29(25):2581-91. doi: 10.1002/sim.4020.
9
Marginal Mean Models for Dynamic Regimes.
J Am Stat Assoc. 2001 Dec 1;96(456):1410-1423. doi: 10.1198/016214501753382327.
10
Sample size for two-stage studies with maintenance therapy.
Stat Med. 2009 Jul 10;28(15):2028-41. doi: 10.1002/sim.3593.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验