Roy Jason, Shou Haochang, Xie Dawei, Hsu Jesse Y, Yang Wei, Anderson Amanda H, Landis J Richard, Jepson Christopher, He Jiang, Liu Kathleen D, Hsu Chi-Yuan, Feldman Harold I
Department of Biostatistics and Epidemiology and.
Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
Clin J Am Soc Nephrol. 2017 Jun 7;12(6):1010-1017. doi: 10.2215/CJN.06210616. Epub 2016 Sep 22.
Prediction models are often developed in and applied to CKD populations. These models can be used to inform patients and clinicians about the potential risks of disease development or progression. With increasing availability of large datasets from CKD cohorts, there is opportunity to develop better prediction models that will lead to more informed treatment decisions. It is important that prediction modeling be done using appropriate statistical methods to achieve the highest accuracy, while avoiding overfitting and poor calibration. In this paper, we review prediction modeling methods in general from model building to assessing model performance as well as the application to new patient populations. Throughout, the methods are illustrated using data from the Chronic Renal Insufficiency Cohort Study.
预测模型通常是在慢性肾脏病(CKD)人群中开发并应用于该人群。这些模型可用于告知患者和临床医生疾病发展或进展的潜在风险。随着来自CKD队列的大型数据集越来越容易获取,有机会开发出更好的预测模型,从而做出更明智的治疗决策。重要的是,预测建模应使用适当的统计方法以实现最高的准确性,同时避免过度拟合和校准不佳。在本文中,我们全面回顾了从模型构建到评估模型性能以及应用于新患者群体的预测建模方法。在整个过程中,使用慢性肾功能不全队列研究的数据对这些方法进行了说明。