Lange Julian, Yamada Shintaro, Tischfield Sam E, Pan Jing, Kim Seoyoung, Zhu Xuan, Socci Nicholas D, Jasin Maria, Keeney Scott
Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Memorial Sloan Kettering Cancer Center, Howard Hughes Medical Institute, New York, NY 10065, USA.
Cell. 2016 Oct 20;167(3):695-708.e16. doi: 10.1016/j.cell.2016.09.035. Epub 2016 Oct 13.
Heritability and genome stability are shaped by meiotic recombination, which is initiated via hundreds of DNA double-strand breaks (DSBs). The distribution of DSBs throughout the genome is not random, but mechanisms molding this landscape remain poorly understood. Here, we exploit genome-wide maps of mouse DSBs at unprecedented nucleotide resolution to uncover previously invisible spatial features of recombination. At fine scale, we reveal a stereotyped hotspot structure-DSBs occur within narrow zones between methylated nucleosomes-and identify relationships between SPO11, chromatin, and the histone methyltransferase PRDM9. At large scale, DSB formation is suppressed on non-homologous portions of the sex chromosomes via the DSB-responsive kinase ATM, which also shapes the autosomal DSB landscape at multiple size scales. We also provide a genome-wide analysis of exonucleolytic DSB resection lengths and elucidate spatial relationships between DSBs and recombination products. Our results paint a comprehensive picture of features governing successive steps in mammalian meiotic recombination.
遗传力和基因组稳定性由减数分裂重组塑造,减数分裂重组通过数百个DNA双链断裂(DSB)启动。DSB在整个基因组中的分布并非随机,但塑造这一格局的机制仍知之甚少。在这里,我们以前所未有的核苷酸分辨率利用小鼠DSB的全基因组图谱,以揭示以前不可见的重组空间特征。在精细尺度上,我们揭示了一种固定的热点结构——DSB发生在甲基化核小体之间的狭窄区域内——并确定了SPO11、染色质和组蛋白甲基转移酶PRDM9之间的关系。在大尺度上,通过DSB反应激酶ATM抑制性染色体非同源部分的DSB形成,ATM也在多个大小尺度上塑造常染色体DSB格局。我们还对核酸外切酶DSB切除长度进行了全基因组分析,并阐明了DSB与重组产物之间的空间关系。我们的结果描绘了一幅控制哺乳动物减数分裂重组连续步骤的特征的全面图景。