Physics Department, University of Arizona, Tucson, Arizona 85721, USA.
National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.
Nat Commun. 2016 Oct 20;7:13168. doi: 10.1038/ncomms13168.
Combining atomically-thin van der Waals materials into heterostructures provides a powerful path towards the creation of designer electronic devices. The interaction strength between neighbouring layers, most easily controlled through their interlayer separation, can have significant influence on the electronic properties of these composite materials. Here, we demonstrate unprecedented control over interlayer interactions by locally modifying the interlayer separation between graphene and boron nitride, which we achieve by applying pressure with a scanning tunnelling microscopy tip. For the special case of aligned or nearly-aligned graphene on boron nitride, the graphene lattice can stretch and compress locally to compensate for the slight lattice mismatch between the two materials. We find that modifying the interlayer separation directly tunes the lattice strain and induces commensurate stacking underneath the tip. Our results motivate future studies tailoring the electronic properties of van der Waals heterostructures by controlling the interlayer separation of the entire device using hydrostatic pressure.
将原子级薄的范德华材料组合成异质结构为设计电子器件提供了一条强有力的途径。通过改变层间距离,最容易控制相邻层之间的相互作用强度,这对这些复合材料的电子性质有显著的影响。在这里,我们通过用扫描隧道显微镜针尖施加压力来局部改变石墨烯和氮化硼之间的层间距离,从而实现了对层间相互作用的前所未有的控制。对于在氮化硼上排列整齐或几乎排列整齐的石墨烯的特殊情况,石墨烯晶格可以局部拉伸和压缩,以补偿两种材料之间的微小晶格失配。我们发现,通过改变层间距离可以直接调节晶格应变,并在针尖下诱导出共格堆积。我们的结果激励了未来的研究,通过使用静水压力控制整个器件的层间分离来调整范德华异质结构的电子性质。