Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille Université, CNRS, IRD, Avignon Université, Faculté de Médecine Timone, 27 Bd Jean Moulin, 13005, Marseille, France.
GEOBIOTEC, Departmento de Geociências, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal.
Environ Geochem Health. 2018 Feb;40(1):127-144. doi: 10.1007/s10653-016-9888-z. Epub 2016 Oct 22.
Due to their behavioral characteristics, young children are vulnerable to the ingestion of indoor dust, often contaminated with chemicals that are potentially harmful. Exposure to potentially harmful elements (PHEs) is currently exacerbated by their widespread use in several industrial, agricultural, domestic and technological applications. PHEs cause adverse health effects on immune and nervous systems and can lead to cancer development via genotoxic mechanisms. The present study is an integrated approach that aims at assessing the genotoxicity of bioaccessible PHEs following ingestion of contaminated house dust. A multidisciplinary methodology associating chemical characterization of five house dust samples, extraction of the bioaccessible PHEs in gastric extracts by the unified BARGE method, determination of the bioaccessible fraction and in vitro genotoxicity of gastric extracts in adenocarcinoma gastric human (AGS) cells was developed. The five gastric extracts induced dose-dependent genotoxicity in AGS cells. Copper (bioaccessible concentration up to 111 mg/kg) was probably the prevalent PHE inducing primary DNA damage (up to 5.1-fold increase in tail DNA at 0.53 g/l of gastric extract). Lead (bioaccessible concentration up to 245 mg/kg) was the most prevalent PHE inducing chromosome-damaging effects (r = 0.55; p < 0.001 for micronucleated cells induction). The association of principal component analysis and Spearman's correlations was decisive to understand the chromosome-damaging properties of the bioaccessible PHEs in AGS cells. This methodology could be used on a larger-scale study to provide useful information for science-based decision-making in regulatory policies, and a better estimation of human exposure and associated health risks.
由于儿童的行为特点,他们容易摄入室内灰尘,而这些灰尘往往受到潜在有害物质的污染。目前,由于这些有害物质在工业、农业、家庭和技术应用中广泛使用,它们对儿童造成的潜在有害影响更为严重。这些有害物质会对免疫系统和神经系统造成不良影响,并通过遗传毒性机制导致癌症的发展。本研究采用综合方法,旨在评估摄入受污染室内灰尘后生物可利用 PHE 的遗传毒性。本研究采用了一种多学科方法,该方法将五种室内灰尘样本的化学特征分析、胃提取物中生物可利用 PHE 的统一 BARGE 方法提取、生物可利用分数的测定以及胃提取物在腺癌胃人(AGS)细胞中的体外遗传毒性结合在一起。这五种胃提取物在 AGS 细胞中均诱导了剂量依赖性遗传毒性。铜(生物可利用浓度高达 111mg/kg)可能是引起原发性 DNA 损伤的主要 PHE(胃提取物浓度为 0.53g/L 时,尾部 DNA 增加了 5.1 倍)。铅(生物可利用浓度高达 245mg/kg)是引起染色体损伤的主要 PHE(微核细胞诱导的 r 值为 0.55;p 值<0.001)。主成分分析和斯皮尔曼相关性的结合对于理解生物可利用 PHE 在 AGS 细胞中的染色体损伤特性至关重要。该方法可用于更大规模的研究,为基于科学的监管政策决策提供有用信息,并更好地估计人类暴露和相关健康风险。