Agüero Rosario, Buchanan Kendall L, Navarrete-Dechent Cristián, Marghoob Ashfaq A, Stein Jennifer A, Landy Michael S, Leachman Sancy A, Linden Kenneth G, Garcet Sandra, Krueger James G, Gareau Daniel S
Department of Dermatology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
Department of Dermatology, Medical College of Georgia at Augusta University, Augusta, GA 30904, USA.
Cancers (Basel). 2024 Sep 4;16(17):3077. doi: 10.3390/cancers16173077.
Incorporation of dermoscopy and artificial intelligence (AI) is improving healthcare professionals' ability to diagnose melanoma earlier, but these algorithms often suffer from a "black box" issue, where decision-making processes are not transparent, limiting their utility for training healthcare providers. To address this, an automated approach for generating melanoma imaging biomarker cues (IBCs), which mimics the screening cues used by expert dermoscopists, was developed. This study created a one-minute learning environment where dermatologists adopted a sensory cue integration algorithm to combine a single IBC with a risk score built on many IBCs, then immediately tested their performance in differentiating melanoma from benign nevi. Ten participants evaluated 78 dermoscopic images, comprised of 39 melanomas and 39 nevi, first without IBCs and then with IBCs. Participants classified each image as melanoma or nevus in both experimental conditions, enabling direct comparative analysis through paired data. With IBCs, average sensitivity improved significantly from 73.69% to 81.57% ( = 0.0051), and the average specificity improved from 60.50% to 67.25% ( = 0.059) for the diagnosis of melanoma. The index of discriminability (') increased significantly by 0.47 ( = 0.002). Therefore, the incorporation of IBCs can significantly improve physicians' sensitivity in melanoma diagnosis. While more research is needed to validate this approach across other healthcare providers, its use may positively impact melanoma screening practices.
皮肤镜检查与人工智能(AI)的结合正在提高医疗保健专业人员更早诊断黑色素瘤的能力,但这些算法往往存在“黑匣子”问题,即决策过程不透明,限制了它们在培训医疗保健提供者方面的效用。为了解决这个问题,开发了一种自动生成黑色素瘤成像生物标志物线索(IBCs)的方法,该方法模仿了专家皮肤镜医师使用的筛查线索。本研究创建了一个一分钟的学习环境,皮肤科医生采用一种感官线索整合算法,将单个IBC与基于多个IBC构建的风险评分相结合,然后立即测试他们在区分黑色素瘤和良性痣方面的表现。10名参与者评估了78张皮肤镜图像,其中包括39例黑色素瘤和39例痣,先是在没有IBCs的情况下,然后是在有IBCs的情况下。参与者在两种实验条件下将每张图像分类为黑色素瘤或痣,从而能够通过配对数据进行直接比较分析。对于黑色素瘤的诊断,有了IBCs后,平均灵敏度从73.69%显著提高到81.57%( = 0.0051),平均特异性从60.50%提高到67.25%( = 0.059)。可辨别指数(')显著增加了0.47( = 0.002)。因此,纳入IBCs可以显著提高医生在黑色素瘤诊断中的灵敏度。虽然需要更多研究在其他医疗保健提供者中验证这种方法,但其应用可能会对黑色素瘤筛查实践产生积极影响。