Suppr超能文献

关于稳定动态功能脑连接时间序列的方差

On Stabilizing the Variance of Dynamic Functional Brain Connectivity Time Series.

作者信息

Thompson William Hedley, Fransson Peter

机构信息

Department of Clinical Neuroscience, Karolinska Institutet , Stockholm, Sweden .

出版信息

Brain Connect. 2016 Dec;6(10):735-746. doi: 10.1089/brain.2016.0454. Epub 2016 Nov 21.

Abstract

Assessment of dynamic functional brain connectivity based on functional magnetic resonance imaging (fMRI) data is an increasingly popular strategy to investigate temporal dynamics of the brain's large-scale network architecture. Current practice when deriving connectivity estimates over time is to use the Fisher transformation, which aims to stabilize the variance of correlation values that fluctuate around varying true correlation values. It is, however, unclear how well the stabilization of signal variance performed by the Fisher transformation works for each connectivity time series, when the true correlation is assumed to be fluctuating. This is of importance because many subsequent analyses either assume or perform better when the time series have stable variance or adheres to an approximate Gaussian distribution. In this article, using simulations and analysis of resting-state fMRI data, we analyze the effect of applying different variance stabilization strategies on connectivity time series. We focus our investigation on the Fisher transformation, the Box-Cox (BC) transformation and an approach that combines both transformations. Our results show that, if the intention of stabilizing the variance is to use metrics on the time series, where stable variance or a Gaussian distribution is desired (e.g., clustering), the Fisher transformation is not optimal and may even skew connectivity time series away from being Gaussian. Furthermore, we show that the suboptimal performance of the Fisher transformation can be substantially improved by including an additional BC transformation after the dynamic functional connectivity time series has been Fisher transformed.

摘要

基于功能磁共振成像(fMRI)数据评估动态功能脑连接性是一种越来越流行的策略,用于研究大脑大规模网络架构的时间动态。目前在随时间推导连接性估计值时的做法是使用费舍尔变换,其目的是稳定围绕不同真实相关值波动的相关值的方差。然而,当假设真实相关性在波动时,费舍尔变换对每个连接性时间序列进行的信号方差稳定效果如何尚不清楚。这一点很重要,因为当时间序列具有稳定方差或遵循近似高斯分布时,许多后续分析要么假设其成立,要么在此情况下表现更好。在本文中,我们通过对静息态fMRI数据进行模拟和分析,研究了应用不同方差稳定策略对连接性时间序列的影响。我们重点研究了费舍尔变换、Box-Cox(BC)变换以及结合这两种变换的方法。我们的结果表明,如果稳定方差的目的是在时间序列上使用需要稳定方差或高斯分布的度量(例如聚类),那么费舍尔变换并非最优,甚至可能使连接性时间序列偏离高斯分布。此外,我们还表明,在动态功能连接性时间序列经过费舍尔变换后再进行额外的BC变换,可以显著改善费舍尔变换的次优性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验