Suppr超能文献

基于强去相关变换的复数公共空间模式,利用脑电图的μ波和β波节律进行运动想象分类。

Motor Imagery Classification Using Mu and Beta Rhythms of EEG with Strong Uncorrelating Transform Based Complex Common Spatial Patterns.

作者信息

Kim Youngjoo, Ryu Jiwoo, Kim Ko Keun, Took Clive C, Mandic Danilo P, Park Cheolsoo

机构信息

Department of Computer Engineering, Kwangwoon University, 20 Gwangun Rd, Nowon-gu, Seoul 01897, Republic of Korea.

LG, 38 Baumoe-ro, Seocho-gu, Seoul 137724, Republic of Korea.

出版信息

Comput Intell Neurosci. 2016;2016:1489692. doi: 10.1155/2016/1489692. Epub 2016 Oct 3.

Abstract

Recent studies have demonstrated the disassociation between the mu and beta rhythms of electroencephalogram (EEG) during motor imagery tasks. The proposed algorithm in this paper uses a fully data-driven multivariate empirical mode decomposition (MEMD) in order to obtain the mu and beta rhythms from the nonlinear EEG signals. Then, the strong uncorrelating transform complex common spatial patterns (SUTCCSP) algorithm is applied to the rhythms so that the complex data, constructed with the mu and beta rhythms, becomes uncorrelated and its pseudocovariance provides supplementary power difference information between the two rhythms. The extracted features using SUTCCSP that maximize the interclass variances are classified using various classification algorithms for the separation of the left- and right-hand motor imagery EEG acquired from the Physionet database. This paper shows that the supplementary information of the power difference between mu and beta rhythms obtained using SUTCCSP provides an important feature for the classification of the left- and right-hand motor imagery tasks. In addition, MEMD is proved to be a preferred preprocessing method for the nonlinear and nonstationary EEG signals compared to the conventional IIR filtering. Finally, the random forest classifier yielded a high performance for the classification of the motor imagery tasks.

摘要

最近的研究表明,在运动想象任务期间,脑电图(EEG)的μ波和β波之间存在解离。本文提出的算法使用完全数据驱动的多变量经验模式分解(MEMD),以便从非线性EEG信号中获得μ波和β波。然后,将强去相关变换复共空间模式(SUTCCSP)算法应用于这些节律,使由μ波和β波构成的复杂数据变得不相关,并且其伪协方差提供了两种节律之间的补充功率差异信息。使用SUTCCSP提取的最大化类间方差的特征,使用各种分类算法对从Physionet数据库获取的左手和右手运动想象EEG进行分离分类。本文表明,使用SUTCCSP获得的μ波和β波之间功率差异的补充信息为左手和右手运动想象任务的分类提供了重要特征。此外,与传统的IIR滤波相比,MEMD被证明是用于非线性和非平稳EEG信号的首选预处理方法。最后,随机森林分类器在运动想象任务的分类中表现出高性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dfc/5066028/78173a3508bd/CIN2016-1489692.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验