Suppr超能文献

用于病理学图像可扩展分类的交互式学习框架。

An Interactive Learning Framework for Scalable Classification of Pathology Images.

作者信息

Nalisnik Michael, Gutman David A, Kong Jun, Cooper Lee Ad

机构信息

Department of Computer Science and Mathematics, Emory University, Emory University School of Medicine, Atlanta, GA 30322.

Department of Neurology, Emory University, Emory University School of Medicine, Atlanta, GA 30322; Winship Cancer Institute, Emory University, Emory University School of Medicine, Atlanta, GA 30322.

出版信息

Proc IEEE Int Conf Big Data. 2015 Oct-Nov;2015:928-935. doi: 10.1109/BigData.2015.7363841. Epub 2015 Dec 28.

Abstract

Recent advances in microscopy imaging and genomics have created an explosion of patient data in the pathology domain. Whole-slide images (WSIs) of tissues can now capture disease processes as they unfold in high resolution, recording the visual cues that have been the basis of pathologic diagnosis for over a century. Each WSI contains billions of pixels and up to a million or more microanatomic objects whose appearances hold important prognostic information. Computational image analysis enables the mining of massive WSI datasets to extract quantitative morphologic features describing the visual qualities of patient tissues. When combined with genomic and clinical variables, this quantitative information provides scientists and clinicians with insights into disease biology and patient outcomes. To facilitate interaction with this rich resource, we have developed a web-based machine-learning framework that enables users to rapidly build classifiers using an intuitive active learning process that minimizes data labeling effort. In this paper we describe the architecture and design of this system, and demonstrate its effectiveness through quantification of glioma brain tumors.

摘要

显微镜成像和基因组学的最新进展在病理学领域引发了患者数据的爆炸式增长。组织的全切片图像(WSIs)现在能够以高分辨率捕捉疾病发展过程,记录作为一个多世纪以来病理诊断基础的视觉线索。每张WSI包含数十亿像素以及多达一百万个或更多的微观解剖对象,其外观包含重要的预后信息。计算图像分析能够挖掘海量的WSI数据集,以提取描述患者组织视觉特征的定量形态学特征。当与基因组和临床变量相结合时,这些定量信息为科学家和临床医生提供了对疾病生物学和患者预后的深入了解。为了便于与这一丰富资源进行交互,我们开发了一个基于网络的机器学习框架,该框架使用直观的主动学习过程,使用户能够快速构建分类器,从而最大限度地减少数据标注工作。在本文中,我们描述了该系统的架构和设计,并通过对胶质瘤脑肿瘤的量化来证明其有效性。

相似文献

1
An Interactive Learning Framework for Scalable Classification of Pathology Images.用于病理学图像可扩展分类的交互式学习框架。
Proc IEEE Int Conf Big Data. 2015 Oct-Nov;2015:928-935. doi: 10.1109/BigData.2015.7363841. Epub 2015 Dec 28.

本文引用的文献

7
Pathology imaging informatics for quantitative analysis of whole-slide images.病理学成像信息学用于全切片图像的定量分析。
J Am Med Inform Assoc. 2013 Nov-Dec;20(6):1099-108. doi: 10.1136/amiajnl-2012-001540. Epub 2013 Aug 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验