Suppr超能文献

一种纳入媒体效应的流感传播数据驱动模型。

A data-driven model for influenza transmission incorporating media effects.

作者信息

Mitchell Lewis, Ross Joshua V

机构信息

School of Mathematical Sciences , University of Adelaide , North Terrace, 5005 Adelaide, Australia.

出版信息

R Soc Open Sci. 2016 Oct 26;3(10):160481. doi: 10.1098/rsos.160481. eCollection 2016 Oct.

Abstract

Numerous studies have attempted to model the effect of mass media on the transmission of diseases such as influenza; however, quantitative data on media engagement has until recently been difficult to obtain. With the recent explosion of 'big data' coming from online social media and the like, large volumes of data on a population's engagement with mass media during an epidemic are becoming available to researchers. In this study, we combine an online dataset comprising millions of shared messages relating to influenza with traditional surveillance data on flu activity to suggest a functional form for the relationship between the two. Using this data, we present a simple deterministic model for influenza dynamics incorporating media effects, and show that such a model helps explain the dynamics of historical influenza outbreaks. Furthermore, through model selection we show that the proposed media function fits historical data better than other media functions proposed in earlier studies.

摘要

众多研究试图模拟大众媒体对流感等疾病传播的影响;然而,直到最近,关于媒体参与度的定量数据仍难以获取。随着近期来自在线社交媒体等的“大数据”激增,研究人员能够获得大量关于人群在疫情期间与大众媒体互动的数据。在本研究中,我们将一个包含数百万条与流感相关的共享信息的在线数据集与关于流感活动的传统监测数据相结合,以提出两者之间关系的函数形式。利用这些数据,我们提出了一个纳入媒体效应的流感动态简单确定性模型,并表明该模型有助于解释历史上流感爆发的动态情况。此外,通过模型选择,我们表明所提出的媒体函数比早期研究中提出的其他媒体函数更能拟合历史数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23b4/5098988/01bfd39ebbb1/rsos160481-g1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验