Suppr超能文献

用于生物应用的 MA(LDI)-TOF 质谱成像的信号预处理、多元分析和软件工具。

Signal preprocessing, multivariate analysis and software tools for MA(LDI)-TOF mass spectrometry imaging for biological applications.

机构信息

Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), C/Monforte de Lemos 3-5, Madrid, 28029, Spain.

Department of Electronic Engineering, Institute of Health Research Pere Virgili, Rovira i Virgili University, IISPV, Avinguda Països Catalans 26, Tarragona, 43007, Spain.

出版信息

Mass Spectrom Rev. 2018 May;37(3):281-306. doi: 10.1002/mas.21527. Epub 2016 Nov 9.

Abstract

Mass spectrometry imaging (MSI) is a label-free analytical technique capable of molecularly characterizing biological samples, including tissues and cell lines. The constant development of analytical instrumentation and strategies over the previous decade makes MSI a key tool in clinical research. Nevertheless, most MSI studies are limited to targeted analysis or the mere visualization of a few molecular species (proteins, peptides, metabolites, or lipids) in a region of interest without fully exploiting the possibilities inherent in the MSI technique, such as tissue classification and segmentation or the identification of relevant biomarkers from an untargeted approach. MSI data processing is challenging due to several factors. The large volume of mass spectra involved in a MSI experiment makes choosing the correct computational strategies critical. Furthermore, pixel to pixel variation inherent in the technique makes choosing the correct preprocessing steps critical. The primary aim of this review was to provide an overview of the data-processing steps and tools that can be applied to an MSI experiment, from preprocessing the raw data to the more advanced strategies for image visualization and segmentation. This review is particularly aimed at researchers performing MSI experiments and who are interested in incorporating new data-processing features, improving their computational strategy, and/or desire access to data-processing tools currently available. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:281-306, 2018.

摘要

质谱成像(MSI)是一种无标记的分析技术,能够对生物样本进行分子特征分析,包括组织和细胞系。在过去十年中,分析仪器和策略的不断发展使得 MSI 成为临床研究的重要工具。然而,大多数 MSI 研究仅限于靶向分析或仅在感兴趣区域可视化少数几种分子物质(蛋白质、肽、代谢物或脂质),而没有充分利用 MSI 技术固有的可能性,例如组织分类和分割,或通过非靶向方法鉴定相关生物标志物。MSI 数据处理具有挑战性,原因有几个。MSI 实验中涉及的大量质谱使得选择正确的计算策略至关重要。此外,该技术固有的像素到像素变化使得选择正确的预处理步骤至关重要。本综述的主要目的是概述可应用于 MSI 实验的数据处理步骤和工具,从原始数据的预处理到更高级的图像可视化和分割策略。本综述特别针对正在进行 MSI 实验的研究人员,他们有兴趣纳入新的数据处理功能、改进他们的计算策略,和/或希望访问当前可用的数据处理工具。©2016 年 Wiley 期刊,Inc. 质谱综述 37:281-306,2018。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验