Suppr超能文献

基于类激活映射的迁移学习在颈动脉超声斑块分类组合中的应用

Transfer learning with class activation maps in compositions driving plaque classification in carotid ultrasound.

作者信息

Liapi Georgia D, Loizou Christos P, Griffin Maura, Pattichis Constantinos S, Nicolaides Andrew, Kyriacou Efthyvoulos

机构信息

e-Health Laboratory, Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus.

Vascular Screening and Diagnostic Centre, Nicosia, Cyprus.

出版信息

Front Digit Health. 2025 Jul 9;7:1484231. doi: 10.3389/fdgth.2025.1484231. eCollection 2025.

Abstract

INTRODUCTION

Carotid B-mode ultrasound (U/S) imaging provides more than the degree of stenosis in stroke risk assessment. Plaque morphology and texture have been extensively investigated in U/S images, revealing plaque components, such as juxtaluminal black areas close to lumen (JBAs), whose size is linearly related to the risk of stroke. Convolutional neural networks (CNNs) have joined the battle for the identification of high-risk plaques, although the ways they perceive asymptomatic (ASY) and symptomatic (SY) plaque features need further investigation. In this study, the objective was to assess whether class activations maps (CAMs) can reveal which U/S grayscale-(GS)-based plaque compositions (lipid cores, fibrous content, collagen, and/or calcified areas) the model's understanding of the ASY and SY cases.

METHODS

We used Xception via transfer learning, as a base for (all layers frozen), whose output we fed into a new dense layer, followed by a new classification layer, which we trained with standardized B-mode U/S longitudinal plaque images. From a total of 236 images (118 ASY and 118 SY), we used 168 in training (84 ASY and 84 SY), 22 in internal validation (11 ASY and 11 SY), and 46 in testing (23 ASY and 23 SY).

RESULTS

In testing, the model reached an accuracy, sensitivity, specificity, and area under the curve at 80.4%, 82.6%, 78.3%, and 0.80, respectively. Precision and the F1 score were found at 81.8% and 80.0%, and 79.2% and 80.9%, for the ASY and SY cases, respectively. We used faster-Score-CAM to produce a for each tested image, quantifying each plaque composition area overlapping with the heatmap to find compositions areas related to ASY and SY cases. Dark areas (GS ≤ 25) or JBAs (whose presence was verified priorly, by an experienced vascular surgeon) were found for the understanding of both the ASY and the SY plaques. Calcified areas, fibrous content, and lipid cores, , were more related to ASY plaques.

CONCLUSIONS

These findings indicate the need for further investigation on how the GS ≤ 25 plaque areas affect the learning process of the CNN models, and they will be further validated.

摘要

引言

在中风风险评估中,颈动脉B超(U/S)成像提供的信息不止于狭窄程度。U/S图像中对斑块形态和纹理进行了广泛研究,揭示了斑块成分,如靠近管腔的近腔黑色区域(JBA),其大小与中风风险呈线性相关。卷积神经网络(CNN)已参与到识别高危斑块的研究中,不过其对无症状(ASY)和有症状(SY)斑块特征的识别方式仍需进一步研究。在本研究中,目的是评估类别激活图(CAM)能否揭示基于U/S灰度(GS)的斑块成分(脂质核心、纤维成分、胶原蛋白和/或钙化区域)中模型对ASY和SY病例的理解。

方法

我们通过迁移学习使用Xception作为基础(所有层冻结),将其输出输入到一个新的全连接层,随后是一个新的分类层,我们用标准化的B超纵向斑块图像对其进行训练。在总共236张图像(118张ASY和118张SY)中,我们使用168张进行训练(84张ASY和84张SY),22张进行内部验证(11张ASY和11张SY),46张进行测试(23张ASY和23张SY)。

结果

在测试中,该模型的准确率、灵敏度、特异度和曲线下面积分别达到80.4%、82.6%、78.3%和0.80。ASY和SY病例的精确率和F1分数分别为81.8%和80.0%,以及79.2%和80.9%。我们使用更快的Score-CAM为每张测试图像生成一个,量化每个与热图重叠的斑块成分区域,以找到与ASY和SY病例相关的成分区域。发现暗区(GS≤25)或JBA(其存在已由经验丰富的血管外科医生预先验证)有助于理解ASY和SY斑块。钙化区域、纤维成分和脂质核心,,与ASY斑块的相关性更强。

结论

这些发现表明需要进一步研究GS≤25的斑块区域如何影响CNN模型的学习过程,并且它们将得到进一步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01f0/12283640/42f168a2542b/fdgth-07-1484231-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验