Suppr超能文献

一种用于癌症检测和相关基因识别的深度学习方法。

A DEEP LEARNING APPROACH FOR CANCER DETECTION AND RELEVANT GENE IDENTIFICATION.

作者信息

Danaee Padideh, Ghaeini Reza, Hendrix David A

机构信息

School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97330, USA,

出版信息

Pac Symp Biocomput. 2017;22:219-229. doi: 10.1142/9789813207813_0022.

Abstract

Cancer detection from gene expression data continues to pose a challenge due to the high dimensionality and complexity of these data. After decades of research there is still uncertainty in the clinical diagnosis of cancer and the identification of tumor-specific markers. Here we present a deep learning approach to cancer detection, and to the identification of genes critical for the diagnosis of breast cancer. First, we used Stacked Denoising Autoencoder (SDAE) to deeply extract functional features from high dimensional gene expression profiles. Next, we evaluated the performance of the extracted representation through supervised classification models to verify the usefulness of the new features in cancer detection. Lastly, we identified a set of highly interactive genes by analyzing the SDAE connectivity matrices. Our results and analysis illustrate that these highly interactive genes could be useful cancer biomarkers for the detection of breast cancer that deserve further studies.

摘要

由于基因表达数据的高维度和复杂性,从这些数据中进行癌症检测仍然是一项挑战。经过数十年的研究,癌症的临床诊断和肿瘤特异性标志物的识别仍然存在不确定性。在此,我们提出一种深度学习方法用于癌症检测以及识别对乳腺癌诊断至关重要的基因。首先,我们使用堆叠去噪自动编码器(SDAE)从高维基因表达谱中深度提取功能特征。接下来,我们通过监督分类模型评估提取表征的性能,以验证新特征在癌症检测中的有用性。最后,我们通过分析SDAE连通性矩阵识别出一组高度相互作用的基因。我们的结果和分析表明,这些高度相互作用的基因可能是用于检测乳腺癌的有用癌症生物标志物,值得进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67fa/5177447/1bb83a13b45e/nihms831926f1.jpg

相似文献

引用本文的文献

4
Towards a new taxonomy of preterm birth.迈向早产的新分类法。
J Perinatol. 2024 Nov 20. doi: 10.1038/s41372-024-02183-z.

本文引用的文献

2
Differentially Expressed Genes and Signature Pathways of Human Prostate Cancer.人类前列腺癌的差异表达基因和标志性通路
PLoS One. 2015 Dec 18;10(12):e0145322. doi: 10.1371/journal.pone.0145322. eCollection 2015.
5
Machine learning applications in cancer prognosis and prediction.机器学习在癌症预后和预测中的应用。
Comput Struct Biotechnol J. 2014 Nov 15;13:8-17. doi: 10.1016/j.csbj.2014.11.005. eCollection 2015.
9
Reducing the dimensionality of data with neural networks.使用神经网络降低数据维度。
Science. 2006 Jul 28;313(5786):504-7. doi: 10.1126/science.1127647.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验