Suppr超能文献

随机矩形网络中的流行病传播。

Epidemic spreading in random rectangular networks.

作者信息

Estrada Ernesto, Meloni Sandro, Sheerin Matthew, Moreno Yamir

机构信息

Department of Mathematics & Statistics, University of Strathclyde, 26 Richmond Street, Glasgow G1 1XH, United Kingdom.

Department of Theoretical Physics, University of Zaragoza, 50009 Zaragoza, Spain.

出版信息

Phys Rev E. 2016 Nov;94(5-1):052316. doi: 10.1103/PhysRevE.94.052316. Epub 2016 Nov 28.

Abstract

The use of network theory to model disease propagation on populations introduces important elements of reality to the classical epidemiological models. The use of random geometric graphs (RGGs) is one of such network models that allows for the consideration of spatial properties on disease propagation. In certain real-world scenarios-like in the analysis of a disease propagating through plants-the shape of the plots and fields where the host of the disease is located may play a fundamental role in the propagation dynamics. Here we consider a generalization of the RGG to account for the variation of the shape of the plots or fields where the hosts of a disease are allocated. We consider a disease propagation taking place on the nodes of a random rectangular graph and we consider a lower bound for the epidemic threshold of a susceptible-infected-susceptible model or a susceptible-infected-recovered model on these networks. Using extensive numerical simulations and based on our analytical results we conclude that (ceteris paribus) the elongation of the plot or field in which the nodes are distributed makes the network more resilient to the propagation of a disease due to the fact that the epidemic threshold increases with the elongation of the rectangle. These results agree with accumulated empirical evidence and simulation results about the propagation of diseases on plants in plots or fields of the same area and different shapes.

摘要

运用网络理论对人群中的疾病传播进行建模,为经典流行病学模型引入了重要的现实元素。随机几何图(RGGs)的运用就是这类网络模型之一,它能够在疾病传播中考虑空间特性。在某些现实场景中,比如分析一种通过植物传播的疾病时,疾病宿主所在地块和田地的形状可能在传播动态中起着至关重要的作用。在此,我们考虑对RGG进行推广,以考虑分配疾病宿主的地块或田地形状的变化。我们考虑在随机矩形图的节点上发生的疾病传播,并考虑这些网络上易感 - 感染 - 易感模型或易感 - 感染 - 康复模型的流行阈值下限。通过广泛的数值模拟并基于我们的分析结果,我们得出结论(在其他条件相同的情况下),节点分布所在地块或田地的伸长会使网络对疾病传播更具弹性,这是因为流行阈值会随着矩形的伸长而增加。这些结果与关于在相同面积和不同形状的地块或田地上植物疾病传播的累积经验证据和模拟结果一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a82e/7217508/161c8850cdb9/e052316_1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验