Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Palma de Mallorca, E-07122, Spain.
Technische Universität Berlin, Berlin, 10623, Germany.
Sci Rep. 2019 Apr 23;9(1):6463. doi: 10.1038/s41598-019-42871-x.
Interactions often require the proximity between particles. The movement of particles, thus, drives the change of the neighbors which are located in their proximity, leading to a sequence of interactions. In pathogenic contagion, infections occur through proximal interactions, but at the same time, the movement facilitates the co-location of different strains. We analyze how the particle velocity impacts on the phase transitions on the contagion process of both a single infection and two cooperative infections. First, we identify an optimal velocity (close to half of the interaction range normalized by the recovery time) associated with the largest epidemic threshold, such that decreasing the velocity below the optimal value leads to larger outbreaks. Second, in the cooperative case, the system displays a continuous transition for low velocities, which becomes discontinuous for velocities of the order of three times the optimal velocity. Finally, we describe these characteristic regimes and explain the mechanisms driving the dynamics.
相互作用通常需要粒子之间的接近。因此,粒子的运动驱动了位于其附近的邻居的变化,从而导致一系列相互作用。在致病传染中,感染是通过近距离相互作用发生的,但同时,运动促进了不同菌株的共同定位。我们分析了粒子速度如何影响单一感染和两种合作感染的传染过程中的相变。首先,我们确定了一个与最大传染病阈值相关的最佳速度(接近恢复时间归一化的相互作用范围的一半),使得低于最佳值的速度会导致更大的爆发。其次,在合作的情况下,系统在低速度下表现出连续的转变,而在速度接近最佳速度的三倍时,转变变为不连续的。最后,我们描述了这些特征状态,并解释了驱动动力学的机制。