Fundación BCMaterials - Basque Center for Materials, Applications and Nanostructures, Leioa, Spain.
Elektrizitatea eta Elektronika Saila, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain.
Int J Hyperthermia. 2020;37(1):976-991. doi: 10.1080/02656736.2020.1802071.
AIM: The Specific Absorption Rate (SAR) is the key parameter to optimize the effectiveness of magnetic nanoparticles in magnetic hyperthermia. AC magnetometry arises as a powerful technique to quantify the SAR by computing the hysteresis loops' area. However, currently available devices produce quite limited magnetic field intensities, below 45mT, which are often insufficient to obtain major hysteresis loops and so a more complete and understandable magneticcharacterization. This limitation leads to a lack of information concerning some basic properties, like the maximum attainable (SAR) as a function of particles' size and excitation frequencies, or the role of the mechanical rotation in liquid samples. METHODS: To fill this gap, we have developed a versatile high field AC magnetometer, capable of working at a wide range of magnetic hyperthermia frequencies (100 kHz - 1MHz) and up to field intensities of 90mT. Additionally, our device incorporates a variable temperature system for continuous measurements between 220 and 380 K. We have optimized the geometrical properties of the induction coil that maximize the generated magnetic field intensity. RESULTS: To illustrate the potency of our device, we present and model a series of measurements performed in liquid and frozen solutions of magnetic particles with sizes ranging from 16 to 29 nm. CONCLUSION: We show that AC magnetometry becomes a very reliable technique to determine the effective anisotropy constant of single domains, to study the impact of the mechanical orientation in the SAR and to choose the optimal excitation parameters to maximize heating production under human safety limits.
目的:比吸收率(SAR)是优化磁纳米粒子在磁热疗中有效性的关键参数。交流磁强计是一种通过计算磁滞回线面积来定量 SAR 的强大技术。然而,目前可用的设备产生的磁场强度相当有限,低于 45mT,这通常不足以获得主要的磁滞回线,因此需要更完整和可理解的磁特性。这种限制导致缺乏有关一些基本特性的信息,例如作为粒子尺寸和激励频率函数的最大可达到(SAR),或者机械旋转在液体样品中的作用。
方法:为了弥补这一空白,我们开发了一种通用的高场交流磁强计,能够在广泛的磁热疗频率(100 kHz-1MHz)下工作,并能达到 90mT 的磁场强度。此外,我们的设备还集成了一个可变温度系统,可在 220 至 380 K 之间进行连续测量。我们优化了感应线圈的几何形状,以最大限度地提高产生的磁场强度。
结果:为了说明我们设备的功效,我们展示并模拟了一系列在尺寸为 16 至 29nm 的磁性粒子的液态和冷冻溶液中进行的测量。
结论:我们表明,交流磁强计是一种非常可靠的技术,可以确定单畴的有效各向异性常数,研究机械取向对 SAR 的影响,并选择最佳激励参数,以在人体安全限制下最大限度地提高加热效果。
Biochim Biophys Acta Gen Subj. 2016-12-14
Dalton Trans. 2013-1-28
Comput Methods Programs Biomed. 2022-8
Med Phys. 2009-5
ACS Appl Mater Interfaces. 2025-5-21
ACS Appl Mater Interfaces. 2024-12-11
Mater Today Bio. 2023-5-24
Sensors (Basel). 2022-11-17