Fontanillas Eric, Galzitskaya Oxana V, Lecompte Odile, Lobanov Mikhail Y, Tanguy Arnaud, Mary Jean, Girguis Peter R, Hourdez Stéphane, Jollivet Didier
Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7144, Adaptation et Diversité en Milieu Marin, Equipe ABICE, Station Biologique de Roscoff, 29688 Roscoff, France.
Laboratory of Protein Physics, Institute of Protein Research, RAS, Institutskaya street, 4, 142290 Pushchino, Moscow, Russia.
Genome Biol Evol. 2017 Feb 1;9(2):279-296. doi: 10.1093/gbe/evw298.
Temperature, perhaps more than any other environmental factor, is likely to influence the evolution of all organisms. It is also a very interesting factor to understand how genomes are shaped by selection over evolutionary timescales, as it potentially affects the whole genome. Among thermophilic prokaryotes, temperature affects both codon usage and protein composition to increase the stability of the transcriptional/translational machinery, and the resulting proteins need to be functional at high temperatures. Among eukaryotes less is known about genome evolution, and the tube-dwelling worms of the family Alvinellidae represent an excellent opportunity to test hypotheses about the emergence of thermophily in ectothermic metazoans. The Alvinellidae are a group of worms that experience varying thermal regimes, presumably having evolved into these niches over evolutionary times. Here we analyzed 423 putative orthologous loci derived from 6 alvinellid species including the thermophilic Alvinella pompejana and Paralvinella sulfincola. This comparative approach allowed us to assess amino acid composition, codon usage, divergence, direction of residue changes and the strength of selection along the alvinellid phylogeny, and to design a new eukaryotic thermophilic criterion based on significant differences in the residue composition of proteins. Contrary to expectations, the alvinellid ancestor of all present-day species seems to have been thermophilic, a trait subsequently maintained by purifying selection in lineages that still inhabit higher temperature environments. In contrast, lineages currently living in colder habitats likely evolved under selective relaxation, with some degree of positive selection for low-temperature adaptation at the protein level.
温度可能比其他任何环境因素都更有可能影响所有生物体的进化。了解基因组在进化时间尺度上如何通过选择而形成,温度也是一个非常有趣的因素,因为它可能会影响整个基因组。在嗜热原核生物中,温度会影响密码子使用和蛋白质组成,以提高转录/翻译机制的稳定性,并且所产生的蛋白质需要在高温下发挥功能。在真核生物中,关于基因组进化的了解较少,而Alvinellidae科的管栖蠕虫是检验关于外温后生动物嗜热现象出现假说的绝佳机会。Alvinellidae科是一群经历不同热环境的蠕虫,据推测它们在进化过程中进入了这些生态位。在这里,我们分析了来自6种Alvinellidae科物种的423个假定直系同源基因座,包括嗜热的庞贝阿尔文螺(Alvinella pompejana)和亚硫酸副阿尔文螺(Paralvinella sulfincola)。这种比较方法使我们能够评估氨基酸组成、密码子使用、分歧、残基变化方向以及沿着Alvinellidae科系统发育的选择强度,并基于蛋白质残基组成的显著差异设计一种新的真核生物嗜热标准。与预期相反,所有现存物种的Alvinellidae科祖先似乎都是嗜热的,这一特征随后在仍然栖息于较高温度环境的谱系中通过纯化选择得以维持。相比之下,目前生活在较冷栖息地的谱系可能是在选择放松的情况下进化的,在蛋白质水平上对低温适应有一定程度的正选择。