Suppr超能文献

一种基于超体素的利用静息态功能磁共振成像数据进行全脑分组分割的方法。

A Supervoxel-Based Method for Groupwise Whole Brain Parcellation with Resting-State fMRI Data.

作者信息

Wang Jing, Wang Haixian

机构信息

Key Laboratory of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, Southeast University Nanjing, China.

出版信息

Front Hum Neurosci. 2016 Dec 27;10:659. doi: 10.3389/fnhum.2016.00659. eCollection 2016.

Abstract

Node definition is a very important issue in human brain network analysis and functional connectivity studies. Typically, the atlases generated from meta-analysis, random criteria, and structural criteria are utilized as nodes in related applications. However, these atlases are not originally designed for such purposes and may not be suitable. In this study, we combined normalized cut (Ncut) and a supervoxel method called simple linear iterative clustering (SLIC) to parcellate whole brain resting-state fMRI data in order to generate appropriate brain atlases. Specifically, Ncut was employed to extract features from connectivity matrices, and then SLIC was applied on the extracted features to generate parcellations. To obtain group level parcellations, two approaches named mean SLIC and two-level SLIC were proposed. The cluster number varied in a wide range in order to generate parcellations with multiple granularities. The two SLIC approaches were compared with three state-of-the-art approaches under different evaluation metrics, which include spatial contiguity, functional homogeneity, and reproducibility. Both the group-to-group reproducibility and the group-to-subject reproducibility were evaluated in our study. The experimental results showed that the proposed approaches obtained relatively good overall clustering performances in different conditions that included different weighting functions, different sparsifying schemes, and several confounding factors. Therefore, the generated atlases are appropriate to be utilized as nodes for network analysis. The generated atlases and major source codes of this study have been made publicly available at http://www.nitrc.org/projects/slic/.

摘要

节点定义在人类脑网络分析和功能连接性研究中是一个非常重要的问题。通常,从元分析、随机标准和结构标准生成的图谱被用作相关应用中的节点。然而,这些图谱并非最初为此目的而设计,可能并不适用。在本研究中,我们结合归一化割(Ncut)和一种名为简单线性迭代聚类(SLIC)的超体素方法来分割全脑静息态功能磁共振成像(fMRI)数据,以生成合适的脑图谱。具体而言,使用Ncut从连接矩阵中提取特征,然后将SLIC应用于提取的特征以生成分割。为了获得组水平的分割,提出了名为平均SLIC和两级SLIC的两种方法。聚类数量在很宽的范围内变化,以生成具有多种粒度的分割。在不同的评估指标下,将这两种SLIC方法与三种最先进的方法进行了比较,这些指标包括空间邻接性、功能同质性和可重复性。在我们的研究中评估了组间可重复性和组到个体的可重复性。实验结果表明,所提出的方法在包括不同加权函数、不同稀疏化方案和几个混杂因素的不同条件下获得了相对较好的整体聚类性能。因此,生成的图谱适合用作网络分析的节点。本研究生成的图谱和主要源代码已在http://www.nitrc.org/projects/slic/上公开提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/110a/5187473/b9be1629f604/fnhum-10-00659-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验