Shi Rui, Wang Jack P, Lin Ying-Chung, Li Quanzi, Sun Ying-Hsuan, Chen Hao, Sederoff Ronald R, Chiang Vincent L
Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA.
Mountain Horticultural Crops Research and Extension Center, Department of Horticulture, North Carolina State University, Mills River, NC, 28759, USA.
Planta. 2017 May;245(5):927-938. doi: 10.1007/s00425-016-2640-1. Epub 2017 Jan 12.
Co-expression networks based on transcriptomes of Populus trichocarpa major tissues and specific cell types suggest redundant control of cell wall component biosynthetic genes by transcription factors in wood formation. We analyzed the transcriptomes of five tissues (xylem, phloem, shoot, leaf, and root) and two wood forming cell types (fiber and vessel) of Populus trichocarpa to assemble gene co-expression subnetworks associated with wood formation. We identified 165 transcription factors (TFs) that showed xylem-, fiber-, and vessel-specific expression. Of these 165 TFs, 101 co-expressed (correlation coefficient, r > 0.7) with the 45 secondary cell wall cellulose, hemicellulose, and lignin biosynthetic genes. Each cell wall component gene co-expressed on average with 34 TFs, suggesting redundant control of the cell wall component gene expression. Co-expression analysis showed that the 101 TFs and the 45 cell wall component genes each has two distinct groups (groups 1 and 2), based on their co-expression patterns. The group 1 TFs (44 members) are predominantly xylem and fiber specific, and are all highly positively co-expressed with the group 1 cell wall component genes (30 members), suggesting their roles as major wood formation regulators. Group 1 TFs include a lateral organ boundary domain gene (LBD) that has the highest number of positively correlated cell wall component genes (36) and TFs (47). The group 2 TFs have 57 members, including 14 vessel-specific TFs, and are generally less correlated with the cell wall component genes. An exception is a vessel-specific basic helix-loop-helix (bHLH) gene that negatively correlates with 20 cell wall component genes, and may function as a key transcriptional suppressor. The co-expression networks revealed here suggest a well-structured transcriptional homeostasis for cell wall component biosynthesis during wood formation.
基于毛果杨主要组织和特定细胞类型转录组的共表达网络表明,在木材形成过程中,转录因子对细胞壁成分生物合成基因存在冗余调控。我们分析了毛果杨的五种组织(木质部、韧皮部、茎、叶和根)以及两种木材形成细胞类型(纤维和导管)的转录组,以组装与木材形成相关的基因共表达子网络。我们鉴定出165个转录因子(TFs),它们表现出木质部、纤维和导管特异性表达。在这165个转录因子中,有101个与45个次生细胞壁纤维素、半纤维素和木质素生物合成基因共表达(相关系数,r > 0.7)。每个细胞壁成分基因平均与34个转录因子共表达,这表明对细胞壁成分基因表达存在冗余调控。共表达分析表明,基于它们的共表达模式,这101个转录因子和45个细胞壁成分基因各自有两个不同的组(第1组和第2组)。第1组转录因子(44个成员)主要是木质部和纤维特异性的,并且都与第1组细胞壁成分基因(30个成员)高度正共表达,这表明它们作为主要木材形成调节因子的作用。第1组转录因子包括一个侧生器官边界结构域基因(LBD),它与细胞壁成分基因(36个)和转录因子(47个)正相关的数量最多。第2组转录因子有57个成员,包括14个导管特异性转录因子,并且通常与细胞壁成分基因的相关性较低。一个例外是一个导管特异性的碱性螺旋-环-螺旋(bHLH)基因,它与20个细胞壁成分基因负相关,可能作为一个关键的转录抑制因子发挥作用。这里揭示的共表达网络表明,在木材形成过程中,细胞壁成分生物合成存在结构良好的转录稳态。