Suppr超能文献

使用代谢表型学对饮食模式进行客观评估:一项随机、对照、交叉试验。

Objective assessment of dietary patterns by use of metabolic phenotyping: a randomised, controlled, crossover trial.

机构信息

Nutrition and Dietetic Research Group, Division of Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, UK; Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK.

Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK.

出版信息

Lancet Diabetes Endocrinol. 2017 Mar;5(3):184-195. doi: 10.1016/S2213-8587(16)30419-3. Epub 2017 Jan 13.

Abstract

BACKGROUND

Accurate monitoring of changes in dietary patterns in response to food policy implementation is challenging. Metabolic profiling allows simultaneous measurement of hundreds of metabolites in urine, the concentrations of which can be affected by food intake. We hypothesised that metabolic profiles of urine samples developed under controlled feeding conditions reflect dietary intake and can be used to model and classify dietary patterns of free-living populations.

METHODS

In this randomised, controlled, crossover trial, we recruited healthy volunteers (aged 21-65 years, BMI 20-35 kg/m) from a database of a clinical research unit in the UK. We developed four dietary interventions with a stepwise variance in concordance with the WHO healthy eating guidelines that aim to prevent non-communicable diseases (increase fruits, vegetables, whole grains, and dietary fibre; decrease fats, sugars, and salt). Participants attended four inpatient stays (72 h each, separated by at least 5 days), during which they were given one dietary intervention. The order of diets was randomly assigned across study visits. Randomisation was done by an independent investigator, with the use of opaque, sealed, sequentially numbered envelopes that each contained one of the four dietary interventions in a random order. Participants and investigators were not masked from the dietary intervention, but investigators analysing the data were masked from the randomisation order. During each inpatient period, urine was collected daily over three timed periods: morning (0900-1300 h), afternoon (1300-1800 h), and evening and overnight (1800-0900 h); 24 h urine samples were obtained by pooling these samples. Urine samples were assessed by proton nuclear magnetic resonance (H-NMR) spectroscopy, and diet-discriminatory metabolites were identified. We developed urinary metabolite models for each diet and identified the associated metabolic profiles, and then validated the models using data and samples from the INTERMAP UK cohort (n=225) and a healthy-eating Danish cohort (n=66). This study is registered with ISRCTN, number ISRCTN43087333.

FINDINGS

Between Aug 13, 2013, and May 18, 2014, we contacted 300 people with a letter of invitation. 78 responded, of whom 26 were eligible and invited to attend a health screening. Of 20 eligible participants who were randomised, 19 completed all four 72 h study stays between Oct 2, 2013, and July 29, 2014, and consumed all the food provided. Analysis of H-NMR spectroscopy data indicated that urinary metabolic profiles of the four diets were distinct. Significant stepwise differences in metabolite concentrations were seen between diets with the lowest and highest metabolic risks. Application of the derived metabolite models to the validation datasets confirmed the association between urinary metabolic and dietary profiles in the INTERMAP UK cohort (p<0·0001) and the Danish cohort (p<0·0001).

INTERPRETATION

Urinary metabolite models developed in a highly controlled environment can classify groups of free-living people into consumers of diets associated with lower or higher non-communicable disease risk on the basis of multivariate metabolite patterns. This approach enables objective monitoring of dietary patterns in population settings and enhances the validity of dietary reporting.

FUNDING

UK National Institute for Health Research and UK Medical Research Council.

摘要

背景

准确监测食物政策实施后饮食模式的变化具有挑战性。代谢组学可同时测量尿液中的数百种代谢物,其浓度可能受到食物摄入的影响。我们假设在受控喂养条件下开发的尿液样本代谢谱反映了饮食摄入情况,并可用于对自由生活人群的饮食模式进行建模和分类。

方法

在这项随机、对照、交叉试验中,我们从英国临床研究单位的数据库中招募了健康志愿者(年龄 21-65 岁,BMI 20-35 kg/m)。我们开发了四种饮食干预措施,其一致性逐渐增加,符合世界卫生组织预防非传染性疾病的健康饮食指南(增加水果、蔬菜、全谷物和膳食纤维;减少脂肪、糖和盐)。参与者参加了四次住院治疗(每次 72 小时,至少间隔 5 天),在此期间他们接受了一种饮食干预。饮食的顺序在研究访问中随机分配。随机化由独立研究者进行,使用不透明、密封、顺序编号的信封,每个信封中按随机顺序包含四种饮食干预措施之一。参与者和研究者不受饮食干预的影响,但分析数据的研究者不受随机化顺序的影响。在每个住院期间,每天在三个定时时间段收集尿液:早晨(0900-1300 h)、下午(1300-1800 h)和傍晚及夜间(1800-0900 h);通过合并这些样本获得 24 小时尿液样本。使用质子磁共振(H-NMR)光谱法对尿液样本进行评估,并鉴定出与饮食相关的代谢物。我们为每种饮食开发了尿液代谢物模型,并确定了相关的代谢谱,然后使用 INTERMAP UK 队列(n=225)和健康饮食丹麦队列(n=66)的数据和样本对模型进行了验证。这项研究在 ISRCTN 注册,编号 ISRCTN43087333。

结果

在 2013 年 8 月 13 日至 2014 年 5 月 18 日之间,我们向 300 人发出了邀请信。其中 78 人回信,其中 26 人符合条件并受邀参加健康筛查。在 20 名符合条件的随机参与者中,有 19 人于 2013 年 10 月 2 日至 2014 年 7 月 29 日期间完成了所有四次 72 小时住院治疗,并食用了所有提供的食物。对 H-NMR 光谱数据分析表明,四种饮食的尿液代谢谱明显不同。在最低和最高代谢风险的饮食之间,代谢物浓度呈显著的逐步差异。应用衍生的代谢物模型对验证数据集进行分析,证实了 INTERMAP UK 队列(p<0.0001)和丹麦队列(p<0.0001)中尿液代谢和饮食谱之间的关联。

解释

在高度受控的环境中开发的尿液代谢物模型可以根据多维代谢物模式将自由生活人群分为食用与较低或较高非传染性疾病风险相关的饮食的组群。这种方法可以在人群环境中对饮食模式进行客观监测,并提高饮食报告的有效性。

资助

英国国家健康研究所和英国医学研究理事会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee10/5357736/736cd4a1d434/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验