Suppr超能文献

分子分类反应的机制基础。

Mechanistic basis for a molecular triage reaction.

作者信息

Shao Sichen, Rodrigo-Brenni Monica C, Kivlen Maryann H, Hegde Ramanujan S

机构信息

Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.

出版信息

Science. 2017 Jan 20;355(6322):298-302. doi: 10.1126/science.aah6130.

Abstract

Newly synthesized proteins are triaged between biosynthesis and degradation to maintain cellular homeostasis, but the decision-making mechanisms are unclear. We reconstituted the core reactions for membrane targeting and ubiquitination of nascent tail-anchored membrane proteins to understand how their fate is determined. The central six-component triage system is divided into an uncommitted client-SGTA complex, a self-sufficient targeting module, and an embedded but self-sufficient quality control module. Client-SGTA engagement of the targeting module induces rapid, private, and committed client transfer to TRC40 for successful biosynthesis. Commitment to ubiquitination is dictated primarily by comparatively slower client dissociation from SGTA and nonprivate capture by the BAG6 subunit of the quality control module. Our results provide a paradigm for how priority and time are encoded within a multichaperone triage system.

摘要

新合成的蛋白质在生物合成和降解之间进行分类,以维持细胞内稳态,但其决策机制尚不清楚。我们重构了新生尾锚定膜蛋白的膜靶向和泛素化的核心反应,以了解其命运是如何决定的。由六个组件组成的核心分类系统分为一个未确定的客户-SGTA复合物、一个自给自足的靶向模块和一个嵌入式但自给自足的质量控制模块。靶向模块与客户-SGTA的结合会促使客户快速、专属且确定地转移到TRC40,以实现成功的生物合成。对泛素化的确定主要取决于客户从SGTA相对较慢的解离以及质量控制模块的BAG6亚基的非专属捕获。我们的结果为多分子伴侣分类系统中如何编码优先级和时间提供了一个范例。

相似文献

1
Mechanistic basis for a molecular triage reaction.
Science. 2017 Jan 20;355(6322):298-302. doi: 10.1126/science.aah6130.
2
SGTA antagonizes BAG6-mediated protein triage.
Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19214-9. doi: 10.1073/pnas.1209997109. Epub 2012 Nov 5.
3
Structural insights into metazoan pretargeting GET complexes.
Nat Struct Mol Biol. 2021 Dec;28(12):1029-1037. doi: 10.1038/s41594-021-00690-7. Epub 2021 Dec 9.
4
Mitochondrial antiviral-signalling protein is a client of the BAG6 protein quality control complex.
J Cell Sci. 2022 May 1;135(9). doi: 10.1242/jcs.259596. Epub 2022 May 11.
5
Protein targeting and degradation are coupled for elimination of mislocalized proteins.
Nature. 2011 Jul 10;475(7356):394-7. doi: 10.1038/nature10181.
6
The association of BAG6 with SGTA and tail-anchored proteins.
PLoS One. 2013;8(3):e59590. doi: 10.1371/journal.pone.0059590. Epub 2013 Mar 22.
8
SGTA associates with nascent membrane protein precursors.
EMBO Rep. 2020 May 6;21(5):e48835. doi: 10.15252/embr.201948835. Epub 2020 Mar 25.
9
The natural history of Get3-like chaperones.
Traffic. 2019 May;20(5):311-324. doi: 10.1111/tra.12643.

引用本文的文献

1
Shaping the composition of the mitochondrial outer membrane.
Nat Cell Biol. 2025 Jun;27(6):890-901. doi: 10.1038/s41556-025-01683-0. Epub 2025 Jun 16.
2
Mechanism of chaperone recruitment and retention on mitochondrial precursors.
Mol Biol Cell. 2025 Apr 1;36(4):ar39. doi: 10.1091/mbc.E25-01-0035. Epub 2025 Jan 29.
3
Engineering a membrane protein chaperone to ameliorate the proteotoxicity of mutant huntingtin.
Nat Commun. 2025 Jan 17;16(1):737. doi: 10.1038/s41467-025-56030-6.
5
Mechanisms suppressing noncoding translation.
Trends Cell Biol. 2024 Oct 22. doi: 10.1016/j.tcb.2024.09.004.
6
Kinetic Resolution of Epimeric Proteins Enables Stereoselective Chemical Mutagenesis.
J Am Chem Soc. 2024 Aug 14;146(32):22622-22628. doi: 10.1021/jacs.4c07103. Epub 2024 Jul 31.
8
A unifying model for membrane protein biogenesis.
Nat Struct Mol Biol. 2024 Jul;31(7):1009-1017. doi: 10.1038/s41594-024-01296-5. Epub 2024 May 29.
9
A dual role of the conserved PEX19 helix in safeguarding peroxisomal membrane proteins.
iScience. 2024 Mar 18;27(4):109537. doi: 10.1016/j.isci.2024.109537. eCollection 2024 Apr 19.
10
BAG6 inhibits influenza A virus replication by inducing viral polymerase subunit PB2 degradation and perturbing RdRp complex assembly.
PLoS Pathog. 2024 Mar 18;20(3):e1012110. doi: 10.1371/journal.ppat.1012110. eCollection 2024 Mar.

本文引用的文献

1
Structural and functional insights into the E3 ligase, RNF126.
Sci Rep. 2016 May 19;6:26433. doi: 10.1038/srep26433.
2
Target Selection during Protein Quality Control.
Trends Biochem Sci. 2016 Feb;41(2):124-137. doi: 10.1016/j.tibs.2015.10.007. Epub 2015 Nov 25.
4
Mechanism of Assembly of a Substrate Transfer Complex during Tail-anchored Protein Targeting.
J Biol Chem. 2015 Dec 11;290(50):30006-17. doi: 10.1074/jbc.M115.677328. Epub 2015 Oct 7.
5
Binding of SGTA to Rpn13 selectively modulates protein quality control.
J Cell Sci. 2015 Sep 1;128(17):3187-96. doi: 10.1242/jcs.165209. Epub 2015 Jul 13.
6
Asymmetric damage segregation at cell division via protein aggregate fusion and attachment to organelles.
Bioessays. 2015 Jul;37(7):740-7. doi: 10.1002/bies.201400224. Epub 2015 May 12.
7
8
Bag6 complex contains a minimal tail-anchor-targeting module and a mock BAG domain.
Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):106-11. doi: 10.1073/pnas.1402745112. Epub 2014 Dec 22.
9
The structural basis of substrate recognition by the eukaryotic chaperonin TRiC/CCT.
Cell. 2014 Nov 20;159(5):1042-1055. doi: 10.1016/j.cell.2014.10.042.
10
Key steps in ERAD of luminal ER proteins reconstituted with purified components.
Cell. 2014 Sep 11;158(6):1375-1388. doi: 10.1016/j.cell.2014.07.050.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验