Suppr超能文献

金属-CO 电池在路上:从污染气体到能源的 CO。

Metal-CO Batteries on the Road: CO from Contamination Gas to Energy Source.

机构信息

Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Institute of New Energy Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.

出版信息

Adv Mater. 2017 Apr;29(15). doi: 10.1002/adma.201605891. Epub 2017 Jan 20.

Abstract

Rechargeable nonaqueous metal-air batteries attract much attention for their high theoretical energy density, especially in the last decade. However, most reported metal-air batteries are actually operated in a pure O atmosphere, while CO and moisture in ambient air can significantly impact the electrochemical performance of metal-O batteries. In the study of CO contamination on metal-O batteries, it has been gradually found that CO can be utilized as the reactant gas alone; namely, metal-CO batteries can work. On the other hand, investigations on CO fixation are in focus due to the potential threat of CO on global climate change, especially for its steadily increasing concentration in the atmosphere. The exploitation of CO in energy storage systems represents an alternative approach towards clean recycling and utilization of CO . Here, the aim is to provide a timely summary of recent achievements in metal-CO batteries, and inspire new ideas for new energy storage systems. Moreover, critical issues associated with reaction mechanisms and potential directions for future studies are discussed.

摘要

可充电的非水金属-空气电池因其高理论能量密度而备受关注,尤其是在过去十年中。然而,大多数报道的金属-空气电池实际上是在纯 O 气氛中运行的,而环境空气中的 CO 和水分会显著影响金属-O 电池的电化学性能。在研究 CO 对金属-O 电池的污染时,人们逐渐发现 CO 可以单独作为反应物气体使用,即金属-CO 电池可以工作。另一方面,由于 CO 对全球气候变化的潜在威胁,特别是其在大气中浓度的稳步增加,对 CO 固定的研究受到了关注。在储能系统中开发 CO 代表了清洁回收和利用 CO 的一种替代方法。在这里,我们的目的是及时总结金属-CO 电池的最新研究成果,并为新型储能系统激发新的思路。此外,还讨论了与反应机制相关的关键问题和未来研究的潜在方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验