Bhattacharya Shuvodip, Johnston Steven W, Bodnar Robert J, Hudait Mantu K
Advanced Devices & Sustainable Energy Laboratory (ADSEL), Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.
National Renewable Energy Laboratory, Golden, Colorado 80401, United States.
ACS Appl Electron Mater. 2024 Jun 6;6(6):4247-4256. doi: 10.1021/acsaelm.4c00347. eCollection 2024 Jun 25.
Extensive research efforts of strained germanium (Ge) are currently underway due to its unique properties, namely, (i) possibility of band gap and strain engineering to achieve a direct band gap, thus exhibiting superior radiative properties, and (ii) higher electron and hole mobilities than Si for upcoming technology nodes. Realizing lasing structures is vital to leveraging the benefits of tensile-strained Ge (ε-Ge). Here, we use a combination of different analytical tools to elucidate the effect of the underlying InGaAs/InAlAs and InGaAs overlaying heterostructures on the material quality and strain state of ε-Ge grown by molecular beam epitaxy. Using X-ray analysis, we show the constancy of tensile strain in sub-50 nm ε-Ge in a quantum-well (QW) heterostructure. Further, effective carrier lifetime using photoconductive decay as a function of buffer type exhibited a high (low) defect-limited carrier lifetime of ∼68 ns (∼13 ns) in 0.61% (0.66%) ε-Ge grown on an InGaAs (InAlAs) buffer. These results correspond well with the measured surface roughness of 1.289 nm (6.303 nm), consistent with the surface effect of the ε-Ge/III-V heterointerface. Furthermore, a reasonably high effective lifetime of ∼78 ns is demonstrated in a QW of ∼30 nm 1.6% ε-Ge, a moderate reduction from ∼99 ns in uncapped ε-Ge, alluding to the surface effect of the overlying heterointerface. Thus, the above results highlight the prime quality of ε-Ge that can be achieved via III-V heteroepitaxy and paves a path for integrated Ge photonics.
由于应变锗(Ge)具有独特的性质,目前正在进行广泛的研究工作。这些性质包括:(i)通过带隙和应变工程实现直接带隙的可能性,从而展现出优异的辐射特性;(ii)对于即将到来的技术节点,其电子和空穴迁移率比硅更高。实现激光结构对于利用拉伸应变锗(ε-Ge)的优势至关重要。在这里,我们结合使用不同的分析工具,以阐明底层的InGaAs/InAlAs和InGaAs覆盖异质结构对通过分子束外延生长的ε-Ge的材料质量和应变状态的影响。通过X射线分析,我们展示了量子阱(QW)异质结构中50nm以下ε-Ge的拉伸应变的稳定性。此外,使用光电导衰减测量的有效载流子寿命作为缓冲层类型的函数,在InGaAs(InAlAs)缓冲层上生长的0.61%(0.66%)ε-Ge中,显示出约68ns(约13ns)的高(低)缺陷限制载流子寿命。这些结果与测得的1.289nm(6.303nm)表面粗糙度很好地对应,这与ε-Ge/III-V异质界面的表面效应一致。此外,在约30nm的1.6%ε-Ge量子阱中展示了约78ns的相当高的有效寿命,比未覆盖的ε-Ge中的约99ns适度降低,这暗示了上覆异质界面的表面效应。因此,上述结果突出了通过III-V异质外延可实现的ε-Ge的优质特性,并为集成锗光子学铺平了道路。