Suppr超能文献

快速与慢速扫描:3特斯拉功能磁共振成像的当前局限性与未来潜力

Scanning fast and slow: current limitations of 3 Tesla functional MRI and future potential.

作者信息

Boubela Roland N, Kalcher Klaudius, Nasel Christian, Moser Ewald

机构信息

Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria.

MR Center of Excellence, Medical University of Vienna, Vienna, Austria; Department of Radiology, State Clinical Center Danube District, Tulln, Austria.

出版信息

Front Phys. 2014 Feb 11;2:00001. doi: 10.3389/fphy.2014.00001.

Abstract

Functional MRI at 3T has become a workhorse for the neurosciences, e.g., neurology, psychology, and psychiatry, enabling non-invasive investigation of brain function and connectivity. However, BOLD-based fMRI is a rather indirect measure of brain function, confounded by physiology related signals, e.g., head or brain motion, brain pulsation, blood flow, intermixed with susceptibility differences close or distant to the region of neuronal activity. Even though a plethora of preprocessing strategies have been published to address these confounds, their efficiency is still under discussion. In particular, physiological signal fluctuations closely related to brain supply may mask BOLD signal changes related to "true" neuronal activation. Here we explore recent technical and methodological advancements aimed at disentangling the various components, employing fast multiband vs. standard EPI, in combination with fast temporal ICA. Our preliminary results indicate that fast ( <0.5 s) scanning may help to identify and eliminate physiologic components, increasing tSNR and functional contrast. In addition, biological variability can be studied and task performance better correlated to other measures. This should increase specificity and reliability in fMRI studies. Furthermore, physiological signal changes during scanning may then be recognized as a source of information rather than a nuisance. As we are currently still undersampling the complexity of the brain, even at a rather coarse macroscopic level, we should be very cautious in the interpretation of neuroscientific findings, in particular when comparing different groups (e.g., age, sex, medication, pathology, etc.). From a technical point of view our goal should be to sample brain activity at layer specific resolution with low TR, covering as much of the brain as possible without violating SAR limits. We hope to stimulate discussion toward a better understanding and a more quantitative use of fMRI.

摘要

3T功能磁共振成像(fMRI)已成为神经科学领域(如神经病学、心理学和精神病学)的常用工具,能够对脑功能和连接性进行无创研究。然而,基于血氧水平依赖(BOLD)的fMRI是一种相当间接的脑功能测量方法,会受到与生理相关信号的干扰,例如头部或脑部运动、脑搏动、血流,以及与神经元活动区域附近或远处的磁化率差异相互混合。尽管已经发表了大量预处理策略来解决这些干扰因素,但其效率仍在讨论之中。特别是,与脑供血密切相关的生理信号波动可能会掩盖与“真正”神经元激活相关的BOLD信号变化。在此,我们探索了旨在分离各种成分的最新技术和方法进展,采用快速多波段与标准回波平面成像(EPI)相结合,并结合快速时间独立成分分析(ICA)。我们的初步结果表明,快速(<0.5秒)扫描可能有助于识别和消除生理成分,提高时间信噪比(tSNR)和功能对比度。此外,可以研究生物变异性,并将任务表现与其他测量更好地关联起来。这应该会提高fMRI研究的特异性和可靠性。此外,扫描过程中的生理信号变化随后可能被视为一种信息来源,而不是一种干扰因素。由于我们目前仍在对大脑的复杂性进行欠采样,即使是在相当粗略的宏观层面,我们在解释神经科学研究结果时应该非常谨慎,特别是在比较不同组(如年龄、性别、药物、病理等)时。从技术角度来看,我们的目标应该是以低重复时间(TR)在层特异性分辨率下对脑活动进行采样,在不违反比吸收率(SAR)限制的情况下尽可能多地覆盖大脑。我们希望激发讨论,以更好地理解和更定量地使用fMRI。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0807/5291320/ab11d7deae5d/emss-71211-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验