Suppr超能文献

利用亲属信息进行基因组预测以应用有效的分层医学。

Using information of relatives in genomic prediction to apply effective stratified medicine.

机构信息

School of Environmental and Rural Science, University of New England, NSW 2351, Australia.

The Centre of Neurogenetics and Statistical Genomics, Queensland Brain Institute, The University of Queensland, QLD 4072, Australia.

出版信息

Sci Rep. 2017 Feb 9;7:42091. doi: 10.1038/srep42091.

Abstract

Genomic prediction shows promise for personalised medicine in which diagnosis and treatment are tailored to individuals based on their genetic profiles for complex diseases. We present a theoretical framework to demonstrate that prediction accuracy can be improved by targeting more informative individuals in the data set used to generate the predictors ("discovery sample") to include those with genetically close relationships with the subjects put forward for risk prediction. Increase of prediction accuracy from closer relationships is achieved under an additive model and does not rely on any family or interaction effects. Using theory, simulations and real data analyses, we show that the predictive accuracy or the area under the receiver operating characteristic curve (AUC) increased exponentially with decreasing effective size (N), i.e. when individuals are closely related. For example, with the sample size of discovery set N = 3000, heritability h = 0.5 and population prevalence K = 0.1, AUC value approached to 0.9 and the top percentile of the estimated genetic profile scores had 23 times higher proportion of cases than the general population. This suggests that there is considerable room to increase prediction accuracy by using a design that does not exclude closer relationships.

摘要

基因组预测有望应用于个性化医疗,根据个体的遗传特征来量身定制诊断和治疗方案,以应对复杂疾病。我们提出了一个理论框架,证明通过针对用于生成预测器的数据集中更具信息量的个体(“发现样本”),可以提高预测准确性,这些个体与提出风险预测的对象具有遗传上的密切关系。在加性模型下,预测准确性的提高与家族或相互作用效应无关,仅依赖于更密切的关系。通过理论、模拟和真实数据分析,我们表明预测准确性或接收者操作特征曲线下的面积(AUC)随着有效大小(N)的减小呈指数增长,即当个体之间的关系越密切时,预测准确性就越高。例如,在发现集样本量 N=3000、遗传力 h=0.5 和人群患病率 K=0.1 的情况下,AUC 值接近 0.9,估计遗传特征评分的前百分位数的病例比例比一般人群高 23 倍。这表明,通过使用不排除更密切关系的设计,有相当大的空间来提高预测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d92/5299615/dde3205cf1ee/srep42091-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验