Institute for Physics, Humboldt-University of Berlin, Newtonstraße 15, 12489 Berlin, Germany.
Institute for Theoretical Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.
Phys Rev E. 2017 Jan;95(1-1):012313. doi: 10.1103/PhysRevE.95.012313. Epub 2017 Jan 17.
We show that the recently introduced logarithmic metrics used to predict disease arrival times on complex networks are approximations of more general network-based measures derived from random walks theory. Using the daily air-traffic transportation data we perform numerical experiments to compare the infection arrival time with this alternative metric that is obtained by accounting for multiple walks instead of only the most probable path. The comparison with direct simulations reveals a higher correlation compared to the shortest-path approach used previously. In addition our method allows to connect fundamental observables in epidemic spreading with the cumulant-generating function of the hitting time for a Markov chain. Our results provides a general and computationally efficient approach using only algebraic methods.
我们表明,最近引入的对数度量标准可用于预测复杂网络中的疾病到达时间,这些标准是更一般的基于网络的度量标准的近似值,这些度量标准是从随机游走理论中得出的。我们使用每日空中交通运输数据进行数值实验,将感染到达时间与通过考虑多条路径而不是仅最可能路径获得的替代度量标准进行比较。与以前使用的最短路径方法相比,这种比较显示出更高的相关性。此外,我们的方法允许将传染病传播中的基本可观测量与马尔可夫链的到达时间的累积生成函数联系起来。我们的结果提供了一种仅使用代数方法的通用且计算效率高的方法。