Suppr超能文献

吡咯赖氨酸-tRNA合成酶,一种用于遗传密码扩展的氨酰-tRNA合成酶。

Pyrrolysyl-tRNA synthetase, an aminoacyl-tRNA synthetase for genetic code expansion.

作者信息

Crnković Ana, Suzuki Tateki, Söll Dieter, Reynolds Noah M

机构信息

Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8114, USA.

Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8114, USA.; Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA.

出版信息

Croat Chem Acta. 2016 Jun;89(2):163-174. doi: 10.5562/cca2825. Epub 2016 Jun 14.

Abstract

Genetic code expansion (GCE) has become a central topic of synthetic biology. GCE relies on engineered aminoacyl-tRNA synthetases (aaRSs) and a cognate tRNA species to allow codon reassignment by co-translational insertion of non-canonical amino acids (ncAAs) into proteins. Introduction of such amino acids increases the chemical diversity of recombinant proteins endowing them with novel properties. Such proteins serve in sophisticated biochemical and biophysical studies both and , they may become unique biomaterials or therapeutic agents, and they afford metabolic dependence of genetically modified organisms for biocontainment purposes. In the the incorporation of the 22 genetically encoded amino acid, pyrrolysine (Pyl), is facilitated by pyrrolysyl-tRNA synthetase (PylRS) and the cognate UAG-recognizing tRNA. This unique aaRS•tRNA pair functions as an orthogonal translation system (OTS) in most model organisms. The facile directed evolution of the large PylRS active site to accommodate many ncAAs, and the enzyme's anticodon-blind specific recognition of the cognate tRNA make this system highly amenable for GCE purposes. The remarkable polyspecificity of PylRS has been exploited to incorporate >100 different ncAAs into proteins. Here we review the Pyl-OT system and selected GCE applications to examine the properties of an effective OTS.

摘要

遗传密码扩展(GCE)已成为合成生物学的核心主题。GCE依赖于工程化的氨酰-tRNA合成酶(aaRS)和同源tRNA种类,通过将非天然氨基酸(ncAA)共翻译插入蛋白质中来实现密码子重新分配。引入此类氨基酸可增加重组蛋白的化学多样性,赋予它们新的特性。此类蛋白可用于精密的生化和生物物理研究,并且它们可能成为独特的生物材料或治疗剂,此外,出于生物防护目的,它们还能使转基因生物产生代谢依赖性。在自然界中,22种遗传编码氨基酸之一的吡咯赖氨酸(Pyl)的掺入是由吡咯赖氨酰-tRNA合成酶(PylRS)和同源的识别UAG的tRNA促成的。在大多数模式生物中,这种独特的aaRS•tRNA对作为一个正交翻译系统(OTS)发挥作用。大的PylRS活性位点易于进行定向进化以容纳许多ncAA,并且该酶对同源tRNA的反密码子盲特异性识别使得这个系统非常适合用于GCE目的。PylRS显著的多特异性已被用于将100多种不同的ncAA掺入蛋白质中。在这里,我们综述了Pyl-OT系统和选定的GCE应用,以研究有效OTS的特性。

相似文献

1
Pyrrolysyl-tRNA synthetase, an aminoacyl-tRNA synthetase for genetic code expansion.
Croat Chem Acta. 2016 Jun;89(2):163-174. doi: 10.5562/cca2825. Epub 2016 Jun 14.
2
Update of the Pyrrolysyl-tRNA Synthetase/tRNA Pair and Derivatives for Genetic Code Expansion.
J Bacteriol. 2023 Feb 22;205(2):e0038522. doi: 10.1128/jb.00385-22. Epub 2023 Jan 25.
3
Pyrrolysyl-tRNA synthetase-tRNA(Pyl) structure reveals the molecular basis of orthogonality.
Nature. 2009 Feb 26;457(7233):1163-7. doi: 10.1038/nature07611. Epub 2008 Dec 31.
4
Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool.
Biochim Biophys Acta. 2014 Jun;1844(6):1059-70. doi: 10.1016/j.bbapap.2014.03.002. Epub 2014 Mar 12.
5
Mutually orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs.
Nat Chem. 2018 Aug;10(8):831-837. doi: 10.1038/s41557-018-0052-5. Epub 2018 May 28.
6
tRNA: Structure, function, and applications.
RNA Biol. 2018;15(4-5):441-452. doi: 10.1080/15476286.2017.1356561. Epub 2017 Sep 13.
8
Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming.
Chem Rev. 2024 Oct 9;124(19):11008-11062. doi: 10.1021/acs.chemrev.4c00243. Epub 2024 Sep 5.
9
Recognition of non-alpha-amino substrates by pyrrolysyl-tRNA synthetase.
J Mol Biol. 2009 Feb 6;385(5):1352-60. doi: 10.1016/j.jmb.2008.11.059. Epub 2008 Dec 11.
10
An Evolved Methanomethylophilus alvus Pyrrolysyl-tRNA Synthetase/tRNA Pair Is Highly Active and Orthogonal in Mammalian Cells.
Biochemistry. 2019 Feb 5;58(5):387-390. doi: 10.1021/acs.biochem.8b00808. Epub 2018 Sep 27.

引用本文的文献

1
Pyrrolysine Aminoacyl-tRNA Synthetase as a Tool for Expanding the Genetic Code.
Int J Mol Sci. 2025 Jan 10;26(2):539. doi: 10.3390/ijms26020539.
2
Xenobiology for the Biocontainment of Synthetic Organisms: Opportunities and Challenges.
Life (Basel). 2024 Aug 10;14(8):996. doi: 10.3390/life14080996.
3
Orthogonal Translation for Site-Specific Installation of Post-translational Modifications.
Chem Rev. 2024 Mar 13;124(5):2805-2838. doi: 10.1021/acs.chemrev.3c00850. Epub 2024 Feb 19.
4
Expanding the Genetic Code of Embryos.
ACS Chem Biol. 2024 Feb 16;19(2):516-525. doi: 10.1021/acschembio.3c00686. Epub 2024 Jan 26.
6
Dual incorporation of non-canonical amino acids enables production of post-translationally modified selenoproteins.
Front Mol Biosci. 2023 Jan 24;10:1096261. doi: 10.3389/fmolb.2023.1096261. eCollection 2023.
7
Update of the Pyrrolysyl-tRNA Synthetase/tRNA Pair and Derivatives for Genetic Code Expansion.
J Bacteriol. 2023 Feb 22;205(2):e0038522. doi: 10.1128/jb.00385-22. Epub 2023 Jan 25.
8
Chemically Acylated tRNAs are Functional in Zebrafish Embryos.
J Am Chem Soc. 2023 Feb 1;145(4):2414-2420. doi: 10.1021/jacs.2c11452. Epub 2023 Jan 20.
9
Ancestral archaea expanded the genetic code with pyrrolysine.
J Biol Chem. 2022 Nov;298(11):102521. doi: 10.1016/j.jbc.2022.102521. Epub 2022 Sep 22.
10
Engineering of enzymes using non-natural amino acids.
Biosci Rep. 2022 Aug 31;42(8). doi: 10.1042/BSR20220168.

本文引用的文献

1
Designing logical codon reassignment - Expanding the chemistry in biology.
Chem Sci. 2015 Jan 1;6(1):50-69. doi: 10.1039/c4sc01534g. Epub 2014 Jul 14.
2
Genetic code expansion in stable cell lines enables encoded chromatin modification.
Nat Methods. 2016 Feb;13(2):158-64. doi: 10.1038/nmeth.3701. Epub 2016 Jan 4.
3
Efficient Reassignment of a Frequent Serine Codon in Wild-Type Escherichia coli.
ACS Synth Biol. 2016 Feb 19;5(2):163-71. doi: 10.1021/acssynbio.5b00197. Epub 2015 Nov 20.
4
Rationally evolving tRNAPyl for efficient incorporation of noncanonical amino acids.
Nucleic Acids Res. 2015 Dec 15;43(22):e156. doi: 10.1093/nar/gkv800. Epub 2015 Aug 6.
5
Reassignment of a rare sense codon to a non-canonical amino acid in Escherichia coli.
Nucleic Acids Res. 2015 Sep 18;43(16):8111-22. doi: 10.1093/nar/gkv787. Epub 2015 Aug 3.
6
Efficient genetic encoding of phosphoserine and its nonhydrolyzable analog.
Nat Chem Biol. 2015 Jul;11(7):496-503. doi: 10.1038/nchembio.1823. Epub 2015 Jun 1.
8
Recoded organisms engineered to depend on synthetic amino acids.
Nature. 2015 Feb 5;518(7537):89-93. doi: 10.1038/nature14095. Epub 2015 Jan 21.
9
Polyspecific pyrrolysyl-tRNA synthetases from directed evolution.
Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):16724-9. doi: 10.1073/pnas.1419737111. Epub 2014 Nov 10.
10
Revealing the amino acid composition of proteins within an expanded genetic code.
Nucleic Acids Res. 2015 Jan;43(2):e8. doi: 10.1093/nar/gku1087. Epub 2014 Nov 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验