Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, PR China.
Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, PR China; Hubei Cancer Hospital, Wuhan 430079, PR China.
Biosens Bioelectron. 2017 Aug 15;94:219-226. doi: 10.1016/j.bios.2017.03.009. Epub 2017 Mar 7.
Detecting viable circulating tumor cells (CTCs) without disruption to their functions for in vitro culture and functional study could unravel the biology of metastasis and promote the development of personalized anti-tumor therapies. However, existing CTC detection approaches commonly include CTC isolation and subsequent destructive identification, which damages CTC viability and functions and generates substantial CTC loss. To address the challenge of efficiently detecting viable CTCs for functional study, we develop a nanosphere-based cell-friendly one-step strategy. Immunonanospheres with prominent magnetic/fluorescence properties and extraordinary stability in complex matrices enable simultaneous efficient magnetic capture and specific fluorescence labeling of tumor cells directly in whole blood. The collected cells with fluorescent tags can be reliably identified, free of the tedious and destructive manipulations from conventional CTC identification. Hence, as few as 5 tumor cells in ca. 1mL of whole blood can be efficiently detected via only 20min incubation, and this strategy also shows good reproducibility with the relative standard deviation (RSD) of 8.7%. Moreover, due to the time-saving and gentle processing and the minimum disruption of immunonanospheres to cells, 93.8±0.1% of detected tumor cells retain cell viability and proliferation ability with negligible changes of cell functions, capacitating functional study on cell migration, invasion and glucose uptake. Additionally, this strategy exhibits successful CTC detection in 10/10 peripheral blood samples of cancer patients. Therefore, this nanosphere-based cell-friendly one-step strategy enables viable CTC detection and further functional analyses, which will help to unravel tumor metastasis and guide treatment selection.
检测具有活力的循环肿瘤细胞(CTC)而不破坏其在体外培养和功能研究中的功能,可能揭示转移的生物学机制,并促进个性化抗肿瘤治疗的发展。然而,现有的 CTC 检测方法通常包括 CTC 分离和随后的破坏性鉴定,这会破坏 CTC 的活力和功能,并导致大量 CTC 损失。为了解决高效检测具有活力的 CTC 以进行功能研究的挑战,我们开发了一种基于纳米球的细胞友好型一步法策略。具有显著磁/荧光特性和在复杂基质中卓越稳定性的免疫纳米球能够直接在全血中高效地进行磁性捕获和肿瘤细胞的特异性荧光标记。带有荧光标签的收集细胞可以可靠地识别,无需传统 CTC 鉴定中繁琐且具有破坏性的操作。因此,仅通过 20 分钟的孵育,就可以从大约 1mL 的全血中有效地检测到少至 5 个肿瘤细胞,该策略还具有良好的重现性,相对标准偏差(RSD)为 8.7%。此外,由于节省时间且温和的处理以及免疫纳米球对细胞的最小干扰,检测到的 93.8±0.1%的肿瘤细胞保持细胞活力和增殖能力,细胞功能几乎没有变化,能够进行细胞迁移、侵袭和葡萄糖摄取的功能研究。此外,该策略在 10/10 例癌症患者的外周血样本中成功检测到 CTC。因此,这种基于纳米球的细胞友好型一步法策略能够实现具有活力的 CTC 检测和进一步的功能分析,这将有助于揭示肿瘤转移并指导治疗选择。